The quality of cleaning of perforation channels and bottom-hole zone from colmatant directly affects the productivity of wells and reservoirs. One of the methods of production intensification is wave action on reservoir structures with fluid. A number of researchers have proposed devices and technologies for vibration-wave effects implemented directly at the well faces, often without substantiating them either theoretically or experimentally To improve the quality of controlling the parameters of the vibrating microwave effect in order to clean the perforation channels and the bottomhole zone of the formation, numerical simulation of turbulent flooded jets beating to a standstill was performed using the ANSYS Workbench 19.1 software package. The overpressure arising in the perforation channels at different distances of the nozzles orifices from the inlet openings of the perforation channels and under other variable conditions is quantified. The authors obtained calculated dependences of the impulse pressure occurring at the dead end of the perforation channel when the jet of a high-pressure jet of fluid and the perforation channel coincide, on the nozzle moving speed, geometrical parameters of the downhole device, production string diameter, fluid properties, nozzle profile and other factors. A comparison of simulation results and experimental data indicates their satisfactory convergence.
References
1. Dyblenko V.P., Kamalov R.N., Shariffulin R.Ya., Tufanov I.A., Povyshenie produktivnosti i reanimatsiya skvazhin s primeneniem vibrovolnovogo vozdeystviya (Increasing productivity and reanimation of wells using vibrowave impact), Moscow: Nedra Publ., 2000, 404 p.
2. Ibragimov L.Kh., Mishchenko I.T., Cheloyants D.K., Intensifikatsiya dobychi nefti (Oil well stimulation), Moscow: Nauka Publ., 2000, 414 p.
3. Patent no. 2542015 C1 RF, Rotary hydraulic vibrator, Inventors: Omel'yanyuk M.V., Pakhlyan I.A.
4. Abramovich G.N., Teoriya turbulentnykh struy (Theory of turbulent jets), Moscow: Fizmatgiz Publ., 1960, 715 p.
5. Kozodoy A.K., Determination of parameters of jet flooded jets (In Russ.), Izvestiya vuzov. Neft' i gaz, 1959, no. 6, pp. 103–108.
6. Varlamov E.P., Gidrodinamicheskie protsessy na zaboe skvazhiny i sovershenstvovanie sistem promyvki burovykh dolot (Hydrodynamic processes at the bottom of the well and improvement of flushing systems for drill bits): thesis of doctor of technical science, Ufa, 1997.
7. Rodionov V.P., Modelirovanie kavitatsionno-erozionnykh protsessov, vozbuzhdaemykh gidrodinamicheskimi struynymi izluchatelyami (Modelirovanie kavitatsionno-erozionnykh protsessov, vozbuzhdaemykh gidrodinamicheskimi struynymi izluchatelyami): thesis of doctor of technical science, St. Petersburg, 2001.
8. Varapaev V.N., Doroshenko A.V., Lantsova I.Yu., Numerical simulation of propagation of plane turbulent straitened jet in counter flow using LES turbulence model, Procedia Engineering, 2016, V. 153, pp. 816–823, https://doi.org/10.1016/j.proeng.2016.08.248
9. Ukolov A.I., Rodionov V.P., Verification of numerical simulation results and experimental data of the cavitation influence on hydrodynamic characteristics of a jet flow (In Russ.), Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki, 2018, no. 4, pp. 102–114, https://doi.org/10.18698/1812-3368-2018-4-102-114
10. Elkafas A.G., Elgohary M.M., Zeid A.E., Numerical study on the hydrodynamic drag force of a container ship model, Alexandria Engineering Journal, 2019, V. 58, pp. 849–859, https://doi.org/10.1016/j.aej.2019.07.004
11. Ali M., Yan C., Sun Z. et al., CFD simulation of dust particle removal efficiency of a venturi scrubber in CFX, Nuclear Engineering and Design, 2013, V. 256, pp. 169–177, https://doi:10.1016/j.nucengdes.2012.12.013
12. Kuchumov R.Ya., Shagiev R.G., Issledovanie vliyaniya viboudarnykh voln na pronitsaemost' iskusstvennogo kerna (Study of the impact of shock waves on the permeability of artificial core), Proceedings of UNI, 1974, V. 17, pp. 44–46.