A new approach of quantifying the technical condition of rod units with the solution of inverse dynamic problems by multidimensional optimization methods

UDK: 622.276.53
DOI: 10.24887/0028-2448-2019-7-118-122
Key words: sucker-rod pumping unit, dynamogram, diagnostics, multidimensional optimization, intake pressure, complicating factors, gas impact, high landing of the plunger
Authors: Bakhtizin R.N., Urazakov K.R., Timashev E.O., Belov A.E.

A significant number of the largest oil fields in Russia are in the final stage of development, which is characterized by decrease in production volumes and increase in the share of complicated well stock. One of the most common ways to operate small-debit wells is sucker-rod pump units. In some cases the operation of rod units in complicated operating conditions is accompanied by reduction in inter-repair period of operation, increase in energy and economic unit costs during oil production. In these conditions, one of the most urgent tasks is reaching profitable development of wells through timely diagnosing the technical and working conditions of pumping equipment.

The aim of the study is to develop a new approach of diagnosing the condition of sucker-rod pump units on dynamogram. It is based on solving the reverse problems of the dynamics of the rod units by multidimensional optimization methods. The direct problem solution includes modeling the rod unit on the specified technological and geological and technical parameters and building the appropriate theoretical dynamogram. The inverse problem means defining the desired parameters of the model with taking into account the actual dynamogram of the rod unit. A method and an appropriate algorithm for diagnosing the condition of sucker-rod pumping units on dynamogram have been developed based on the Levenberg – Marquardt method for multidimensional optimization. The method includes quantifying the total values and parameters that characterize technical and working conditions of the rod unit, as well as complications and malfunctions that occur during its operation. There are examples of solving quantitative diagnostics tasks based on the developed algorithm by analyzing the configuration of dynamograms and constructing targeted functions under different operation conditions of pumping equipment (i.e. normal operation, high gas content at the pump suction, high landing of the plunger in the cylinder).

References

1. Aliev T.A., Rzayev A.H., Guluyev G.A., Alizada T.A., Rzayeva N.E., Robust technology and system for management of sucker rod pumping units in oil wells, Mechanical Systems and Signal Processing, 2018, V. 99, pp. 47-56.

2. Sadov V.B., The approach to definition of defects of sucker rod pump on dinacard (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 2, pp. 90–93.

3. Kovshov V.D., Sidorov M.E., Svetlakova S.V., Dynamometry, modelling and diagnostic the condition of rod pump (In Russ.), Izvestiya vuzov. Neft' i gaz, 2011, no. 3, pp. 25–29.

4. Li K., Han Y., Wang T., A novel prediction method for down-hole working conditions of the beam pumping unit based on 8-directions chain codes and online sequential extreme learning machine, Journal of Petroleum Science and Engineering, 2018, V. 160, pp. 285–301.

5. Kuz'min A.N., Vyalykh I.A., Prediction of technical condition ofrod pumps based on neural network technology (In Russ.) Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Khimicheskaya tekhnologiya i biotekhnologiya = PNRPU Bulletin. Chemical Technology and Biotechnology, 2016, no. 3, pp. 9–19.

6. Virnovskiy A.S., Teoriya i praktika glubinnonasosnoy dobychi nefti (Theory and practice of bottomhole pumping), Moscow: Nedra Publ., 1971, 184 p.

7. Gibbs S.G., Neely A.B., Computer diagnosis of down-hole conditions in sucker rod pumping wells, Journal of Petroleum Technology, 1966, V. 1, pp. 93–98.

8. Chen Z., White L.W., Zhang H., Predicting sucker-rod pumping systems with Fourier series, SPE 189991-PA, 2018, https://doi.org/10.2118/189991-PA.

9. Bakhtizin R.N., Urazakov K.R., Bakirov R.I. et al., Method for calculating the plunger hanger in the cylinder of the sucker-rod pump (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2018, no. 2, pp. 84–88.

10. Hansen V., Tolbert B., Vernon C., Hedengren J.D., Model predictive automatic control of sucker rod pump system with simulation case study, Computers and Chemical Engineering, 2019, V. 121, pp. 265–284.

11. Bakhtizin R.N., Urazakov K.R., Ismagilov S.F., Topol'nikov A.S., Davletshin F.F., Dynamic model of a rod pump installation for inclined wells, Socar Proceedings, 2017, no. 4, pp. 74–82.

12. Urazakov K.R., Bakhtizin R.N., Ismagilov S.F., Topol'nikov A.S., Theoretical dynamometer card calculation taking into account complications in the sucker rod pump operation (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 1, pp. 90–93.

13. Brill J.P., Mukherjee H., Multiphase flow in wells, Society of petroleum engineers: Richardson, Texas, 1999, 384 p.

14. Xiancheng Sh., Yucheng F., Jinsong Z., Kefu Ch., Chaos time-series prediction based on an improved recursive Levenberg – Marquardt algorithm, Chaos, Solitons & Fractals, 2017, V. 100, pp. 57–61, DOI: 10.1016/j.chaos.2017.04.032.

15. Urazakov K.R., Belov A.E., Davletshin F.F., Dynamic model of a rod pump installation for dual completion (In Russ.), Problemy sbora, podgotovki i transporta nefti i nefteproduktov, 2018, no. 3, pp. 33–41.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .