Field trial results of water shut-off in oil producing wells using the Temposcreen-Plus technology in RN-Purneftegas LLC

UDK: 622.276.7:622.245.43
DOI: 10.24887/0028-2448-2019-6-78-82
Key words: water shut-off, water control, innovative technology, liquid production rate decline, gel-forming water-swellable compositions
Authors: D.A. Kaushanskiy (Oil and Gas Research Institute RAS, RF, Moscow; Research and Technology Company Atombiotech LLC, RF, Moscow), V.B. Demyanovskiy (Oil and Gas Research Institute RAS, RF, Moscow; Research and Technology Company Atombiotech LLC, RF, Moscow), N.R. Bakirov (Oil and Gas Research Institute RAS, RF, Moscow; Research and Technology Company Atombiotech LLC, RF, Moscow), S.P. Baryaev (RN-Purneftegas LLC, RF, Gubkinsky), D.P. Sherbakov (RN-Purneftegas LLC, RF, Gubkinsky), A.R. Shaimardanov (RN-BashNIPIneft LLC, RF, Ufa)

The article presents data on the energy consumption of the oil fields of RN-Purneftegas LLC, which are at a late stage of development, due to high watering of wells, a way to limit water inflows is described as a measure aimed at reducing the water content. The basic requirements for the compositions for limiting water inflow developed by the specialists of RN-Purneftegas are also given. The article sets out the criteria for the selection of candidate wells, provides a general plan for limiting water inflow using the Temposcreen-Plus technology, and the parameters of the Temposcreen-Plus gel-forming water-swellable composition developed by Research and Technology Company Atombiotech LLC. The results of laboratory and pilot tests are briefly described, including the rheological and physicochemical properties of the polymer-gel systems (PGS) Temposcreen-Plus. Additional testing of the technology in the laboratory of RN-UfaNIPIneft (now RN-BashNIPIneft) for compliance with specifications, degree of swelling, viscosity, the strength and possibility of destruction of PGS by various destructors are evaluated, filtration testing is conducted on the core. A water shut-off plan has been developed for three producing wells of the Barsukovskoye field. Pilot tests on these wells are described. The article describes the stages of implementation of the Temposcreen-Plus technology and notes that all work was carried out in accordance with the technological plans using standard equipment. The data of well logging is given. As a result of technological procedures, it is shown that after the work has been completed; there is no reinforcement with cement or other anchoring composition. The article presents the results of the pilot tests, it is shown that not previously worked interlayers, including oil saturated, are included in the work. The article also notes the change in the dynamics of fluid flow rate at producing wells before and after the application of the Temposcreen-Plus technology. The article concludes that the work was carried out successfully and recommended for implementation (replication) in the oil fields of RN-Purneftegas.

References

1. Morikov I.P., Sakhan' A.V., Shcherbakov D.P. et al., Practical experience in water shut-off treatments planning and realization (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 11, pp. 62–64.

2. Strizhnev K.V., Remontno-izolyatsionnye raboty v skvazhinakh: Teoriya i praktika (Repair and insulation works in wells: Theory and Practice), St. Peterburg: Nedra Publ., 2010, 560 p.

3. Dubininskiy G.S., Akchurin Kh.I., Andreev V.E., Kotenev Yu.A., Tekhnologii vodoizolyatsionnykh rabot v terrigennykh kollektorakh (Technologies of waterproofing works in terrigenous collectors), St. Petersburg: Nedra Publ., 2011, 178 p.

4. Zemtsov Yu.V., Timchuk A.S., Akinin D.V., Kraynov M.V., Retrospective analysis of methods applied for water inflows limiting, prospects of further development in the Western Siberia (In Russ.), Neftepromyslovoe delo, 2014, no. 4, pp. 17–22.

5. Strizhnev V.A., Tyapov O.A., Umetbaev V.G., Obobshchenie opyta provedeniya remontno-izolyatsionnykh rabot na otdel'nykh krupnykh mestorozhdeniyakh Zapadnoy Sibiri (The generalization of the experience of the repair and insulation works on selected large fields of Western Siberia), Ufa: Skif Publ., 2013, 272 p.

6. Kaushanskiy D.A., Dem'yanovskiy V.B., Innovative water suppression technology for production wells “Temposcreen-Plus” (In Russ.), Aktual'nye problemy nefti i gaza, 2018, no. 1(20), DOI 10.29222/ipng.2078-5712.2018-20.art22.

7. Patent no. 2558565 S1 RU, Oil production increase method, Inventors: Kaushanskiy D.A., Dem'yanovskiy V.B.

8. Patent no. 2656654 S2 RU, Method to increase oil production, Inventors: Kaushanskiy D.A., Dem'yanovskiy V.B.

9. Kraynov M.V., Goryachev S.E., NK Rosneft actual problems and solutions in the repair and insulation works and water shut-off (In Russ.), Inzhenernaya praktika, 2014, no. 5, pp. 104–117.

The article presents data on the energy consumption of the oil fields of RN-Purneftegas LLC, which are at a late stage of development, due to high watering of wells, a way to limit water inflows is described as a measure aimed at reducing the water content. The basic requirements for the compositions for limiting water inflow developed by the specialists of RN-Purneftegas are also given. The article sets out the criteria for the selection of candidate wells, provides a general plan for limiting water inflow using the Temposcreen-Plus technology, and the parameters of the Temposcreen-Plus gel-forming water-swellable composition developed by Research and Technology Company Atombiotech LLC. The results of laboratory and pilot tests are briefly described, including the rheological and physicochemical properties of the polymer-gel systems (PGS) Temposcreen-Plus. Additional testing of the technology in the laboratory of RN-UfaNIPIneft (now RN-BashNIPIneft) for compliance with specifications, degree of swelling, viscosity, the strength and possibility of destruction of PGS by various destructors are evaluated, filtration testing is conducted on the core. A water shut-off plan has been developed for three producing wells of the Barsukovskoye field. Pilot tests on these wells are described. The article describes the stages of implementation of the Temposcreen-Plus technology and notes that all work was carried out in accordance with the technological plans using standard equipment. The data of well logging is given. As a result of technological procedures, it is shown that after the work has been completed; there is no reinforcement with cement or other anchoring composition. The article presents the results of the pilot tests, it is shown that not previously worked interlayers, including oil saturated, are included in the work. The article also notes the change in the dynamics of fluid flow rate at producing wells before and after the application of the Temposcreen-Plus technology. The article concludes that the work was carried out successfully and recommended for implementation (replication) in the oil fields of RN-Purneftegas.

References

1. Morikov I.P., Sakhan' A.V., Shcherbakov D.P. et al., Practical experience in water shut-off treatments planning and realization (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 11, pp. 62–64.

2. Strizhnev K.V., Remontno-izolyatsionnye raboty v skvazhinakh: Teoriya i praktika (Repair and insulation works in wells: Theory and Practice), St. Peterburg: Nedra Publ., 2010, 560 p.

3. Dubininskiy G.S., Akchurin Kh.I., Andreev V.E., Kotenev Yu.A., Tekhnologii vodoizolyatsionnykh rabot v terrigennykh kollektorakh (Technologies of waterproofing works in terrigenous collectors), St. Petersburg: Nedra Publ., 2011, 178 p.

4. Zemtsov Yu.V., Timchuk A.S., Akinin D.V., Kraynov M.V., Retrospective analysis of methods applied for water inflows limiting, prospects of further development in the Western Siberia (In Russ.), Neftepromyslovoe delo, 2014, no. 4, pp. 17–22.

5. Strizhnev V.A., Tyapov O.A., Umetbaev V.G., Obobshchenie opyta provedeniya remontno-izolyatsionnykh rabot na otdel'nykh krupnykh mestorozhdeniyakh Zapadnoy Sibiri (The generalization of the experience of the repair and insulation works on selected large fields of Western Siberia), Ufa: Skif Publ., 2013, 272 p.

6. Kaushanskiy D.A., Dem'yanovskiy V.B., Innovative water suppression technology for production wells “Temposcreen-Plus” (In Russ.), Aktual'nye problemy nefti i gaza, 2018, no. 1(20), DOI 10.29222/ipng.2078-5712.2018-20.art22.

7. Patent no. 2558565 S1 RU, Oil production increase method, Inventors: Kaushanskiy D.A., Dem'yanovskiy V.B.

8. Patent no. 2656654 S2 RU, Method to increase oil production, Inventors: Kaushanskiy D.A., Dem'yanovskiy V.B.

9. Kraynov M.V., Goryachev S.E., NK Rosneft actual problems and solutions in the repair and insulation works and water shut-off (In Russ.), Inzhenernaya praktika, 2014, no. 5, pp. 104–117.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

12.05.2021
29.04.2021
19.04.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина