Application of a risk-based approach to the management of the technical state of the tanks of offshore oil terminals

UDK: 622.692.23–034.14
DOI: 10.24887/0028-2448-2019-2-75-77
Key words: tanks, normative documents, vertical steel cylindrical, sea terminal
Authors: N.N. Gorban (Caspian Pipeline Consortium JSC, RF, Moscow), G.G. Vasilyev (Gubkin University, RF, Moscow), I.A. Leonovich (Gubkin University, RF, Moscow)

Today in the Russian Federation there is active search and implementation to construction and operation of facilities of oil and gas complex of the advanced foreign techniques of increase of operational reliability and management of integrity of such facilities. This tendency is especially important for unique and technically difficult facilities which projects are implemented in the Russian Federation in recent years. One of bright representatives of such objects are vertical steel tanks of large volume (more than 50000 m3) constructed for operation within terminals of transfer of oil in sea tankers. For management of data security of tanks actively takes root and the risk-focused methodology which is presented by the whole range as domestic documents, generally of techniques of Rostekhnadzor, and foreign, presented by the authoritative international organizations is widely applied.

The practice of implementing projects for the construction of large-capacity reservoirs in the Russian Federation primarily relies on regulatory methods developed over the past thirty years. These techniques are strength calculations for the criterion of failure with verification by the criterion of buckling. However, the practice of operating such structures shows that emergency and emergency situations are extremely rarely happen under these scenarios. The world practice of implementing a risk-oriented methodology for managing the technical condition of hazardous production facilities requires a comprehensive analysis of their operating conditions, the likelihood of implementing all possible emergency scenarios and the scale of their consequences.

In this article the analysis of factors and mechanisms which have the most important character for introduction risk-focused methodology in management of technical condition of tanks of large volume is carried out. The analysis of the limitations and advantages of this methodology, compared with the widely used methodologies, analyzes the prospect of its implementation in the production process.

References

1. Safety Guide “Metodicheskie rekomendatsii po provedeniyu kolichestvennogo analiza riska avariy na opasnykh proizvodstvennykh ob"ektakh magistral'nykh nefteprovodov i nefteproduktoprovodov” (Guidelines for conducting a quantitative analysis of the risk of accidents at hazardous production facilities of main oil pipelines and oil product pipelines), approved Order Rostekhnadzor from 17.06.2016 no. 228.

2. Safety Guide “Metodicheskie osnovy po provedeniyu analiza opasnostey i otsenki riska avariy na opasnykh proizvodstvennykh ob"ektakh” (Methodological framework for conducting hazard analysis and risk assessment of accidents at hazardous production facilities), approved by order of Rostekhnadzor from 11.04.2016 no. 144.

3. Order of Rostekhnadzor no. 349 “Ob utverzhdenii Rukovodstva po bezopasnosti “Metodika ustanovleniya dopustimogo riska avarii pri obosnovanii bezopasnosti opasnykh proizvodstvennykh ob"ektov neftegazovogo kompleksa” (On approval of the Safety Guide “Methodology for determining the permissible risk of an accident while justifying the safety of hazardous production facilities of the oil and gas complex”, August 23, 2016.

4. Jian Shuai, Kejiang Han, Xuerui Xu, Risk-based inspection for large-scale crude oil tanks, Journal of Loss Prevention in the Process Industries, 2012, V. 25, pp. 166-175, URL: https://www.sciencedirect.com/science/article/abs/pii/ S0950423011001434?via%3Dihub

5. Santanu Saha, Risk based assessment of above ground storage tank bottoms – Role of magnetic flux leakage technique, URL: https://www.ndt.net/ article/nde-india2016/papers/A205.pdf

Today in the Russian Federation there is active search and implementation to construction and operation of facilities of oil and gas complex of the advanced foreign techniques of increase of operational reliability and management of integrity of such facilities. This tendency is especially important for unique and technically difficult facilities which projects are implemented in the Russian Federation in recent years. One of bright representatives of such objects are vertical steel tanks of large volume (more than 50000 m3) constructed for operation within terminals of transfer of oil in sea tankers. For management of data security of tanks actively takes root and the risk-focused methodology which is presented by the whole range as domestic documents, generally of techniques of Rostekhnadzor, and foreign, presented by the authoritative international organizations is widely applied.

The practice of implementing projects for the construction of large-capacity reservoirs in the Russian Federation primarily relies on regulatory methods developed over the past thirty years. These techniques are strength calculations for the criterion of failure with verification by the criterion of buckling. However, the practice of operating such structures shows that emergency and emergency situations are extremely rarely happen under these scenarios. The world practice of implementing a risk-oriented methodology for managing the technical condition of hazardous production facilities requires a comprehensive analysis of their operating conditions, the likelihood of implementing all possible emergency scenarios and the scale of their consequences.

In this article the analysis of factors and mechanisms which have the most important character for introduction risk-focused methodology in management of technical condition of tanks of large volume is carried out. The analysis of the limitations and advantages of this methodology, compared with the widely used methodologies, analyzes the prospect of its implementation in the production process.

References

1. Safety Guide “Metodicheskie rekomendatsii po provedeniyu kolichestvennogo analiza riska avariy na opasnykh proizvodstvennykh ob"ektakh magistral'nykh nefteprovodov i nefteproduktoprovodov” (Guidelines for conducting a quantitative analysis of the risk of accidents at hazardous production facilities of main oil pipelines and oil product pipelines), approved Order Rostekhnadzor from 17.06.2016 no. 228.

2. Safety Guide “Metodicheskie osnovy po provedeniyu analiza opasnostey i otsenki riska avariy na opasnykh proizvodstvennykh ob"ektakh” (Methodological framework for conducting hazard analysis and risk assessment of accidents at hazardous production facilities), approved by order of Rostekhnadzor from 11.04.2016 no. 144.

3. Order of Rostekhnadzor no. 349 “Ob utverzhdenii Rukovodstva po bezopasnosti “Metodika ustanovleniya dopustimogo riska avarii pri obosnovanii bezopasnosti opasnykh proizvodstvennykh ob"ektov neftegazovogo kompleksa” (On approval of the Safety Guide “Methodology for determining the permissible risk of an accident while justifying the safety of hazardous production facilities of the oil and gas complex”, August 23, 2016.

4. Jian Shuai, Kejiang Han, Xuerui Xu, Risk-based inspection for large-scale crude oil tanks, Journal of Loss Prevention in the Process Industries, 2012, V. 25, pp. 166-175, URL: https://www.sciencedirect.com/science/article/abs/pii/ S0950423011001434?via%3Dihub

5. Santanu Saha, Risk based assessment of above ground storage tank bottoms – Role of magnetic flux leakage technique, URL: https://www.ndt.net/ article/nde-india2016/papers/A205.pdf



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

21.10.2020
21.10.2020
19.10.2020