The paper describes the issue of combating the intensive precipitation of asphalt-resin-paraffin (ARP) in the conditions of the R. Trebs oil field. The characteristic features of this problem in the oil field are singled out and described. As a research task, the authors determined the assessment of the effectiveness of the anti-ARP technologies used and the attempt to increase the efficiency of the technology without negatively affecting the oil production process. The idea is substantiated that the application of the technology of heating the well products with a heating cable to prevent the formation of paraffin deposits is more effective than the technology of removing deposits by scrapers. The authors focus on the use of a comprehensive solution to improve the efficiency of technology, based on the relationship between the analysis of oil field information and the formation of a mathematical model. The authors propose an approach to modeling the temperature of the produced oil with the heating cable inside the tubing. The resulting model is the key to determining the edge conditions for the application of technology. We generalized practical experience in testing technologies for removing paraffin deposits by scrapers and heating products with cable in the conditions of the R. Trebs oil field. Based on the conducted study, the operating modes of producing wells are determined, in which the intensity of the ARP precipitation is minimal and maximal. In conclusion, the authors proposed a method for increasing the efficiency of the heating liquid cable technology by reducing energy consumption for various well operation parameters. A nomogram was created for prompt decision making in the conditions of changing well operation modes. The main advantage of the new model is the use of a minimum number of input parameters for the operating mode of the well for accurate and operative evaluation of the operating mode of the heating cable. The resulted economic estimation of technology shows double increase in economy without loss of technological efficiency.
References
1. Glushchenko V.N., Silin M.A., Gerin Yu.G., Neftepromyslovaya khimiya (Oilfield chemistry), Part 5, Moscow: Interkontakt Nauka Publ., 2009, 475 p.
2. Ibragimov N.G., Tronov V.P., Gus'kova I.A., Teoriya i praktika metodov bor'by s organicheskimi otlozheniyami na pozdney stadii razrabotki neftyanykh mestorozhdeniy (Theory and practice of methods of struggle with organic varnish in the late stage of development of oil fields), Moscow: Neftyanoe khozyaystvo Publ., 2010, 240 p.
3. Kovrigin L.A., Makienko G.P., Akmalov I.M., Heating cables and temperature control of oil wells (In Russ.), Inzhener, 2000, no. 3, pp. 18-20.
4. Venkatesan R., Creek J.L., Wax deposition and rheology: progress and problems from an operator, SPE 20668-MS, 2010.вЃ