Article briefly describes results of experimental investigations of geomechanical properties for major lithogenetic types of carbonate rocks, constituting the typical sedimentary sequence for the Bashkirian stage of the middle Carboniferous. Feature of experimental work has been conducting laboratory tests on large-sized samples, close to a full-sized core rock (63 mm diameter, with height to diameter ratio in between 1:1 - 2:1). To account for anisotropy of elastic and strength properties for carbonates, sampling has been carried out in two orthogonal directions: along bedding and cross bedding. In absence of standard documentation to execution of researches for the samples of specified size, methodical sequence of laboratory experiments is offered, for receipt of maximum informativeness on mechanical and formation reservoir properties. Results showed significant difference for bioclast-zoogenic type I and type II limestones by physical and mechanical properties, but also on the character of development of deformation in zones weakness – shear fracture plane. Research methods and results include a few cutting-edge technical solutions in the context of "digital core". A result shows the efficacy of computed tomography to determine porosity. Using special algorithms for raw data processing of X-ray tomography allows to classify porous space by dimensions .Volumetric model with texture, carried out as a result of photogrammetry, applicable to highlight the natural fracturing of rocks. Correlation between p-wave propagation measurements in laboratory on core samples and derived from acoustic well logging has been noticed. As a rapid analysis method of the mechanical properties of carbonate rocks, authors recommends to use a Schmidt rebound hammer, as a cheaper and more affordable alternative to continuous profiling with a scratcher.
References
1. Zheltov Yu.V., Kudinov V.I., Malofeev G.E., Razrabotka slozhnopostroennykh mestorozhdeniy vyazkoy nefti v karbonatnykh kollektorakh (Development of complex deposits of viscous oil in carbonate reservoirs), Moscow: Neft' i gaz Publ., 1997, 256 p.
2. Mukhametshin R.Z., Kalmykov A.V., Prichiny i sledstvie neodnorodnosti produktivnykh karbonatnykh tolshch pri proektirovanii i razrabotke zalezhey vysokovyazkoy nefti (na primere mestorozhdeniy Tatarstana) (The causes and consequences of heterogeneity of productive carbonate formations in the design and development of heavy oil deposits (by the example of Tatarstan fields)), Proceedings of Conference held at the University of Krasnodar in honour of prof. Dr. Anatoly I. Bulatov, Part 2. Razrabotka neftyanykh i gazovykh mestorozhdeniy (Development of oil and gas fields): edited by Savenok O.V., 31 March 2017, Krasnodar: PH – Yug, 2017, pp. 168–174.
3. Korolev E.A., Eskin A.A., Morozov V.P. et al., The relationships between petroleum composition and viscosity of oil and petrophysical properties of oil reservoirs (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2013, no. 6, pp. 32–33.
4. Khisamov R.S., Bazarevskaya V.G., Tarasova T.I. et al., Determination of fracturing in carbonate deposits in order to sel ect the optimal location of horizontal wells (In Russ.), Georesursy = Georesources, 2013, no. 4 (54), pp. 58–64.
5. Kol'chugin A.N., Morozov V.P., Korolev E.A. et al., Typical sections of Bashkirian carbonate rocks and structure of oil deposits in southeast part of the Republic of Tatarstan (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2013, no. 11, pp. 84–86.
6. Lucia F.J., Carbonate reservoir characterization: An integrated approach, Springer, Berlin Heidelberg New York, 2007, 333 p.
7. Idiyatullina Z.S., Arzamastsev A.I., Mironova L.M., Increasing the efficiency of oil production fr om low-permeability layered reservoirs at the deposits of the Republic of Tatarstan (In Russ.), Territoriya Neftegaz, 2012, no. 4, pp. 44–49.
8. Malykhin V.I., Takhautdinov R.Sh., Yakubov M.R., Perfection of methods and technologies for bottomhole zone treatment and enhanced oil recovery for low-effective fields with high-viscosity oil (In Russ.), Ekspozitsiya Neft' Gaz, 2010, no. 1, pp. 36–37.
9. Ibragimov N.G, Salimov O.V, Ibatullin R.R., Geomechanical conditions of successful acid fracturing applications (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 7, pp. 32–36.
10. Salimov O.V., Some challenges related to geomechanical modeling at shallow depths (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 8, pp. 99–102.
11. Salimov O.V., Determination of geomechanical parameters based on well logging data (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 6, pp. 30–33.
12. A. Jamshidi et al., The effect of specimen diameter size on uniaxial compressive strength, P-wave velocity and the correlation between them, Geomechanics and Geoengineering, 2016, V. 11, no. 1, pp. 1–7.
13. Zoback M.D., Reservoir geomechanics, New York: Cambridge University Press, 2012, 449 p.
14. Aydin A., Basu A., The Schmidt hammer in rock material characterization, Engineering Geology, 2005, V.81, pp. 1–14.
15. Grishin P.A., Kovalev K.M., Experimental determination of Visovoye oilfield carbonate formations stress-strain properties (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 6, pp. 78–81.