At present, the consequences of accidents and incidents in the operation of vertical steel tanks (RVS) present a serious problem. These tanks require periodic maintenance checks. One of the main problems to be solved during the RVS survey is to determine the exact geometry of the tank parameters and compare them with the normative values. Traditional methods do not always allow with sufficient accuracy to obtain the necessary information. The article describes an integrated approach to solving the problem through the use of three-dimensional laser scanning technology to determine the geometrical characteristics of the reservoirs. Completed work on laser shooting RVS developed and scanning data processing technique made it possible to solve a number of tasks. In this case the resulting point cloud model RVS when applied to the contour of the correct form of the cylinder revealed deviations from the design of geometric shapes facilities regulated by regulations. Works on leveling the outer contour of the bottom of the empty and filled tank, the amount of differential settlement of the outer contour of the bottom was determined by leveling at points corresponding to the vertical joints first belt. Deviations up the walls of the tank from the vertical are determined along the vertical welds in the lower, middle and upper points of each zone. According to the results of examination and materials engineering and geological surveys carried out verification calculations (in design and computing complex SCAD Office), indicating a lack of reinforcement ring foundation. To bring the monolithic reinforced concrete ring foundation RVS in compliance with the requirements of normative documents of work options have been proposed to strengthen it, which ensures efficiency and the launch of the RVS in operation.
References
1. Russian Federal Law no. 384-FZ “Technical Regulations on the Safety of Buildings and Facilities” of December 30th, 2009, URL: http://cis-legislation.com/document.fwx?rgn=30054.
2. Russian Federal Law no. 190-FZ “Town Planning Code of Russia” of 29.12.2004.
3. GOST 31937-2011. Buildings and constructions. Rules of inspection and monitoring of the technical condition, 2014.
4. Komissarov D.V., Seredovich A.V., Ivanov A.V., Method for determining the geometric characteristics of steel cylindrical tanks using laser scanning (In Russ.), Interekspo Geo-Sibir', 2005, V. 1, no. 1, pp. 221–225.
5. Sal'nikov A.P., Otsenka napryazhenno-deformirovannogo sostoyaniya rezervuarov po rezul'tatam nazemnogo lazernogo skanirovaniya (Estimation of stress-strain state of reservoirs based on the results of ground-based laser scanning): thesis of candidate of technical science, Moscow, 2016.
6. Vasil'ev G.G., Lezhnev M.A., Sal'nikov A.P. et al., About application of the surface laser scanning in oil and gas industry (In Russ.), Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov, 2014, no. 4(16), pp. 47–51.
7. Vasil'ev G.G., Lezhnev M.A., Sal'nikov A.P. et al., Work performance on 3-d laser scanning of the vertical stock tank with pontoon (VSTP) 20000 (In Russ.), Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov, 2015, no. 1(17), pp. 54–59.
8. Vasil'ev G.G., Lezhnev M.A., Sal'nikov A.P., Analysis of the three-dimensional laser scanning application on the objects of JSC “Transneft” (In Russ.), Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov, 2015, no. 2(18), pp. 48–55.
9. Ivanov A.V., Razrabotka metodiki geodezicheskogo kontrolya inzhenernykh ob"ektov na osnovanii dannykh nazemnogo lazernogo skanirovaniya (Development of a method for geodetic control of engineering facilities based on ground-based laser scanning data): thesis of candidate of technical science, Novosibirsk, 2012.
10. Seredovich V.A., Komissarov V.A., Shirokova T.A., Nazemnoe lazernoe skanirovanie (Ground laser scanning), Novosibirsk: Publ. of SGGA, 2009, 261 p.
11. Tishkin V.O., Technique of data assemblage and processing, received in 3D scanning process (In Russ.), Nauchno-tekhnicheskiy vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta informatsionnykh tekhnologiy, mekhaniki i optiki, 2011, no. 1(71), pp. 87–92.
12. Rukovodstvo po bezopasnosti vertikal'nykh tsilindricheskikh stal'nykh rezervuarov dlya nefti i nefteproduktov (Guide to the safety of vertical cylindrical steel tanks for oil and petroleum products), Moscow: Publ. of NTTs PB, 2013, 121 p.