Rapid method for oil-field development assessing

UDK: 622.276.1/.4
DOI: 10.24887/0028-2448-2017-6-84-87
Key words: displacement factor, coverage ratio, grid factor, final stage development, workover planning, two-dimensional models, oil recovery factor, displacement characteristics, heterogeneity model
Authors: D.A. Khodanovich, R.V. Malkosh (Tyumen Branch of SurgutNIPIneft, RF, Tyumen)

The major oil-fields depletion level is increases every year and production levels maintaining becomes one of the main license holder objectives. Localization of zones with the highest concentration of non-mobile stocks, which are confined to highly heterogeneous reservoirs, is the main means of oil production levels maintaining at the final development stage. Qualitative and reliable identification of promising areas and their subsequent active involving into oilfield development will justify the further field operations profitability and also will allow avoiding the oil production losses, which are connected with inefficient geological and technical operations planning.

Currently three-dimensional hydrodynamic models are the main tool for making operational decision on development control. Such models require a significant amount of time and high engineer qualifications, especially when modeling large objects with a long development history.

Geological and technical operations planning should be implemented by the new high-tech approaches involvement, including analytical techniques, which shows high efficiency on the long-developed fields. Analytical techniques also allow determining the actual initial recoverable oil reserves, to establish the reasons for their difference from the officially approved ones and to reveal the possibility of their significant increase.

Software techniques implementation, which is represented in article, allowed carrying out an oil-field current state development operational analysis on the final development stage. As a result the waterflooding coefficient and coverage ratio coefficient grids were plotted and oil recovery coefficient map was proposed. All results were used in the oilfield development documentation of Surgutneftegas OJSC.

References

1. Ababkov K.V., Postroenie kart geologo-geofizicheskikh parametrov i geometrizatsiya zalezhey nefti i gaza (Construction of maps of geological and geophysical parameters and the geometrization of oil and gas deposits), Ufa: Neftegazovoe delo Publ., 2008, 289 p.

2. Metodicheskie rekomendatsii po podschetu zapasov nefti i gaza ob’emnym metodom. Otsenka kharaktera nasyshchennosti po dannym GIS (Guidelines for the calculation of reserves of oil and gas by volumetric method. Assessment of the nature of saturation according to well logging): edited by Petersil’e V.I., Poroskun V.I., Yatsenko G.G., Moscow –Tver: Publ. of VNIGNI, 2003. 261 p.

3. Lysenko V.D., Razrabotka neftyanykh mestorozhdeniy. Effektivnye metody (Development of oil fields. Effective methods), Moscow: Nedra-Biznestsentr, 2009, 552 p.

4. Lysenko V.D., Grayfer V.I., Ratsional'naya razrabotka neftyanykh mestorozhdeniy (Rational development of oil fields), Moscow Nedra-Biznestsentr, 2005, 607 p.

5. Willhite G.P., Waterflooding, SPE Textbook Series, 1986.

6. Dake L.P., Fundamentals of reservoir engineering, Elsevier (USA), 2003, 570 p.

7. Amelin I.D., Surguchev M.L., Davydov A.V., Prognoz razrabotki neftyanykh zalezhey na pozdney stadii (The forecast of oil deposits development at a late stage), Moscow: Nedra Publ., 1994, 308 p.

8. Medvedskiy R.I., Sevast'yanov A.A., Otsenka izvlekaemykh zapasov nefti i prognoz urovney dobychi po promyslovym dannym (Estimation of recoverable oil reserves and forecast of production levels from field data), Moscow: Nedra Publ., 2004, 192 p.

9. Sazonov B.F., Ponomarev A.G., Opyt sovershenstvovaniya sistem razrabotki neftyanykh zalezhey v pozdney stadii (Experience in improving oil field development systems in the late stage), Proceedings of Nauchno-prakticheskoy konferentsii, posvyashchennoy pamyati N.N. Lisovskogo, Nedra-XXI Publ., 2011, pp. 151–153.  

The major oil-fields depletion level is increases every year and production levels maintaining becomes one of the main license holder objectives. Localization of zones with the highest concentration of non-mobile stocks, which are confined to highly heterogeneous reservoirs, is the main means of oil production levels maintaining at the final development stage. Qualitative and reliable identification of promising areas and their subsequent active involving into oilfield development will justify the further field operations profitability and also will allow avoiding the oil production losses, which are connected with inefficient geological and technical operations planning.

Currently three-dimensional hydrodynamic models are the main tool for making operational decision on development control. Such models require a significant amount of time and high engineer qualifications, especially when modeling large objects with a long development history.

Geological and technical operations planning should be implemented by the new high-tech approaches involvement, including analytical techniques, which shows high efficiency on the long-developed fields. Analytical techniques also allow determining the actual initial recoverable oil reserves, to establish the reasons for their difference from the officially approved ones and to reveal the possibility of their significant increase.

Software techniques implementation, which is represented in article, allowed carrying out an oil-field current state development operational analysis on the final development stage. As a result the waterflooding coefficient and coverage ratio coefficient grids were plotted and oil recovery coefficient map was proposed. All results were used in the oilfield development documentation of Surgutneftegas OJSC.

References

1. Ababkov K.V., Postroenie kart geologo-geofizicheskikh parametrov i geometrizatsiya zalezhey nefti i gaza (Construction of maps of geological and geophysical parameters and the geometrization of oil and gas deposits), Ufa: Neftegazovoe delo Publ., 2008, 289 p.

2. Metodicheskie rekomendatsii po podschetu zapasov nefti i gaza ob’emnym metodom. Otsenka kharaktera nasyshchennosti po dannym GIS (Guidelines for the calculation of reserves of oil and gas by volumetric method. Assessment of the nature of saturation according to well logging): edited by Petersil’e V.I., Poroskun V.I., Yatsenko G.G., Moscow –Tver: Publ. of VNIGNI, 2003. 261 p.

3. Lysenko V.D., Razrabotka neftyanykh mestorozhdeniy. Effektivnye metody (Development of oil fields. Effective methods), Moscow: Nedra-Biznestsentr, 2009, 552 p.

4. Lysenko V.D., Grayfer V.I., Ratsional'naya razrabotka neftyanykh mestorozhdeniy (Rational development of oil fields), Moscow Nedra-Biznestsentr, 2005, 607 p.

5. Willhite G.P., Waterflooding, SPE Textbook Series, 1986.

6. Dake L.P., Fundamentals of reservoir engineering, Elsevier (USA), 2003, 570 p.

7. Amelin I.D., Surguchev M.L., Davydov A.V., Prognoz razrabotki neftyanykh zalezhey na pozdney stadii (The forecast of oil deposits development at a late stage), Moscow: Nedra Publ., 1994, 308 p.

8. Medvedskiy R.I., Sevast'yanov A.A., Otsenka izvlekaemykh zapasov nefti i prognoz urovney dobychi po promyslovym dannym (Estimation of recoverable oil reserves and forecast of production levels from field data), Moscow: Nedra Publ., 2004, 192 p.

9. Sazonov B.F., Ponomarev A.G., Opyt sovershenstvovaniya sistem razrabotki neftyanykh zalezhey v pozdney stadii (Experience in improving oil field development systems in the late stage), Proceedings of Nauchno-prakticheskoy konferentsii, posvyashchennoy pamyati N.N. Lisovskogo, Nedra-XXI Publ., 2011, pp. 151–153.  



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

11.10.2021
07.10.2021
29.09.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина