The main explored oil and gas reserves in Western Siberia are associated with chalk and upper Jurassic deposits. Above-Cenomanian stratum is a complex object of study and is referred to hard-to-recover reserves of crude hydrocarbons, which cannot be effectively selected with the application of traditional development methods for geological and technological reasons.
Despite the fact, that potential of Turonian deposits was proved by well testing on the many fields in the North of Western Siberia and that the given interval is considered as a development target, the reservoir properties of these deposits are not explored enough and its potential is not clear. Structural and textural features of Turonian reservoir structures can be reasons for that, particularly, extra thin interbedding (bioturbation) of sandstones/ siltstones- shale interlayers, with a thickness of mm factions, so the heterogeneity is observed up to thin section scale. Such textural feature can be the reason for significant uncertainties when studying the complex reservoir not only by logging methods, but also by laboratory studies of core samples, it determines the application of individual approaches to analyze core and log data to study heterogeneous anisotropic Turonian reservoirs. Much attention is given to reliable determination of the portion of permeable layers and reconstruction of its true properties based on the logging data interpretation. Methods of estimation reservoir properties including heterogeneous reservoir structure were considered.
Imaging of full-size core is presented in this work; it allows building 3D model of x-ray density of full-size core. The processing procedure of 3D x-ray tomography of full-size core is presented; it allows estimating the vertical portion of the permeable component of anisotropic reservoir (NTG). Estimation results of portion of the permeable component of heterogeneous anisotropic reservoir (NTG) are presented on the basis of special logging complex methods, particularly, on the basis of formation micro imager and triaxial induction logging. The triaxial induction logging was also used to estimate electrical resistance anisotropy of studied reservoirs and allowed estimating electrical resistance of permeable variations. Results of evaluation of the reservoir gas saturation coefficient were achieved by the specific interpretation of triaxial IRR and better correlated with well testing results.
Ignoring the textural heterogeneity of the deposits considering anisotropy of its physical properties can cause undervaluation of the resource potential of Turonian deposits. Whereas, the petrophysical assessments of anisotropic reservoir model improve the reliability of evaluation of hydrocarbons reserves, optimize geological and hydrodynamic modeling, increase prediction validity of gas recovery factor.