The paper considers ways to improve efficiency of beam-pumping wells by means of enhanced reliability of sucker rods. The proposed method for operation of sucker rods relies on technical condition of pumping equipment rather than purpose of application. Achievement of the best economic balance between reliability of rod strings and service life of sucker rods combined with technical-condition evaluation maximizes efficiency of downhole pumping equipment. Besides, this method ensures the utmost overhaul period which is defined by natural physical constraints.
References
1. Klimov V.A., Valovskiy K.V., Valovskiy V.M., Nugaybekov R.A.,
Akhmadiev N.A., Improvement of downhole pumping equipment maintenance system (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2010, no. 7, pp. 52-54.
2. Klimov V.A., Valovskiy K.V., Valovskiy V.M., Trusov P.V., Zubko I.Yu., On the physics of failures, methods of reliability calculations, and efficient performance of rod string in a well (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2011, no. 7, pp. 66-69.
3. Urazakov K.R., Ekspluatatsiya naklonno napravlennykh nasosnykh
skvazhin (Operation of directional pumping wells), Moscow: Nedra Publ.,
1993, 169 p.
4. Klimov V.A., Valovskiy K.V., Valovskiy V.M., Akhmadiev N.A., Trusov P.V., Shveykin A.I., Dyuzhikov A.E., Advantages of application of composite
sucker rods (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2008, no. 9,
pp. 38-39.
5. Zubairov S.G., Tokarev M.A., Safonov E.N., Yagofarov Yu.N., Salikhov I.A., Operation of rod strings equipped with articulated couplings (In Russ.),
Neftyanoe khozyaystvo = Oil Industry, Neftyanoe khozyaystvo, 2003, no. 1,
pp. 54-56.
6. Puzenko V.I., Analysis of the causes of low durability of sucker rods and increasing their operational reliability (In Russ.), Neftepromyslovoe delo,
2002, no. 11, pp. 88-91.
7. Klimov V.A., Valovskiy K.V., Valovskiy V.M., Trusov P.V., Shveykin A.I., Reducing
the risk of rod breakage with improved methods of qualitative and
quantitative assessment of the remaining life (In Russ.), Neftyanoe
khozyaystvo = Oil Industry, 2009, no. 7, pp. 60-64.
8. Klimov V.A., Valovskiy K.V., Gavrilov V.V., Ishmurzin R.R., Voronkov V.S., Results of complex tests of pumping rods technical diagnostic tools in Tatneft OAO from the point of view of quality of the system of maintenance service and their practical importance (In Russ.), Neftyanoe khozyaystvo = Oil
Industry, 2009, no. 4, pp. 94-98.
9. Valovskiy V.M., Valovskiy K.V., Klimov V.A., Perfection of engineering and technology of oil recovery in the complicated conditions in OAO Tatneft
(In Russ.), Burenie i neft', 2009, no. 2, pp. 34-36.
10. Ryazantsev A.O., Razrabotka metoda vibroakusticheskoy diagnostiki
nasosnykh shtang v protsesse ekspluatatsii (Development of a method of
vibro-acoustic diagnostics of sucker rods during operation): Thesis of the
candidate of technical science, Ufa, 2000.
11. Valovskiy V.M., Valovskiy K.V., Tsepnye privody skvazhinnykh shtangovykh nasosov (Chain drives of sucker-rod pumps), Moscow: Publ. of VNIIOENG, 2004, 492 p.
12. Arzamasov B.N., Makarova V.I., Mukhin G.G. et al., Materialovedenie
(Materials science): edited by Arzamasov B.N., Mukhin G.G., Moscow:
Publ. of Bauman Moscow State Technical University, 2002, 648 p.
13. Trusov P.V., Shveykin A.I., Teoriya opredelyayushchikh sootnosheniy (The theory of constitutive relations), Part 2. Teoriya plastichnosti (The theory of plasticity), Perm': Publ. of Perm State Technical University, 2008, 243 p.
14. Ivanovskiy V.N., Nikolaev N.M., Darishchev V.I., Sabirov A.A., Kashtanov V.S., Technique of hardening and to determine the strength characteristics of sucker rods (In Russ.), Neftepromyslovoe delo, 2000, no. 12, pp. 16-21.
15. Latypov R.I., Lobanov K.V., Nepreryvnaya kolonna nasosnykh shtang
COROD® (Continuous rod string COROD®), Inzhenernaya praktika, 2014,
no. 5, pp. 46-50.