Логин:
Пароль:
Регистрация
Забыли свой пароль?

Analysis of sucker rod pumps operational problems in dually-completed wells

UDK: 622.276.53 : 622.276.1/4
DOI: 10.24887/0028-2448-2019-7-114-117
Key words: dual completion, sucker-rod pump, dynamometer chart, operational problems, valve leakage, plunger fit
Authors: K.R. Urazakov (Ufa State Petroleum Technological University, RF, Ufa), R.Z. Nurgaliev (Almetyevsk State Oil Institute, RF, Almetyevsk), A.E. Belov (Almetyevsk State Oil Institute, RF, Almetyevsk), G.I. Bikbulatova (Almetyevsk State Oil Institute, RF, Almetyevsk), F.F. Davletshin (Bashkir State University, RF,Ufa)

Today, the dual completion of wells with sucker-rod pumping units has become widespread, which allows to significantly increase the technical and economic efficiency of development by combining the facilities in operation. The peculiarities of mechanized oil production in this category of wells are due to a number of common complications arising during the operation and contributing to an increase in the intensity of pumping equipment operation and a decrease in the turnaround time, a decrease in well flow, which leads to a decrease in the efficiency of production in general. In these conditions, the most important tasks of cost-effective development are maintaining in working condition and ensuring optimal operating conditions for pumping equipment.

The article presents a mathematical model of a sucker-rod pumping unit for the dual completion, taking into account complications in the operation of downhole equipment. The proposed model due to a detailed account of the mechanism of formation of downhole processes allows to simulate the effect of complicating factors, such as the effect of gas, high viscosity of pumped products, leaks in valves, etc. By modeling the dynamograms, considering complications and malfunctions in the operation of the pumping unit, the analysis of the influence of complicating factors on the configuration of the model dynamograms was carried out. The proposed mathematical model can be used as a tool for diagnosing the technical condition of sucker-rod pumping units from the actual dynamogram by comparing it with the model ones.

References

1. Ibragimov N.G., Fadeev V.G., Zabbarov R.G. et al., New technology of dual-completion operation, developed in Tatneft OAO (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2008, no. 7, pp. 79–81.

2. Nurgaliev, A.A., Khabibullin L.T., Analysis of the efficiency of simultaneous-separate well operation in the South-East of the Republic of Tatarstan (In Russ.), Interekspo Geo-Sibir', 2016, no. 3(2), pp. 230–233.

3. Kadyrov A.Kh., Glukhoded A.V., Installations of dual production for the wells with small diameter (In Russ.), Inzhenernaya praktika, 2017, no. 6, pp. 4–11.

4. Gabert R.F., Ghneim G.J., Procedures and practices of dual completion design in Abu Dhabi, SPE 17983-PA, 1991, V. 6, no. 1, pp. 44–49, https://doi.org/10.2118/17983-PA

5. Muhammad I.K., Raymond E.P., Mohd S.J., Collaboration in extracting more oil in mature dual completion wells, SPE 124443-MS, 2009, https://doi.org/10.2118/124443-MS.

6. Swisher M.D., Wojtanowicz A.K., New dual completion method eliminates bottom water coning, SPE 30697-MS, 1995, https://doi.org/10.2118/30697-MS.

7. Patent no. 2377395 RF, MPK E 21 B 43/14, Equipment for simultaneous-separate process of two reservoirs of single well, Inventors: Garifov K.M., Ibragimov N.G., Fadeev V.G., Akhmetvaliev R.N., Kadyrov A.Kh., Rakhmanov I.N., Glukhoded A.V., Balboshin V.A.

8. Tret'yakov D.L., Results of technology implementation of simultaneous-separate production with gas exhaust system from the bottom horizon in wells of Belorusneft (In Russ.), Inzhenernaya praktika, 2016, no. 5, pp. 58–32.

9. Gaddy D.E., Dual compietions provide production alternative in Russian venture, Oil and Gas Journal, 2005, V. 103 (14), pp. 43–47.

10. Garifov K.M., Kadyrov A.H., Ibragimov N.G., Fadeev V.G., Zabbarov R.G., Advances in dual completion technology in Tatneft OAO (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2013, no. 7, pp. 44–47.

11. Garifov K.M., Tatneft: Technologies of dual completion (In Russ.), Neftegazovaya Vertikal', 2011, no. 13–14, pp. 114–117.

12. Patent no. 2221136 RF, Installation for separate operation of two formations simultaneously, Inventors: Ibragimov N.G., Garifov K.M., Fadeev V.G., Avramenko A.N., Ibatullin V.M., Valovskiy A.FI., Kadyrov A.F.

13. Valitov M.Z., Boltneva Yu.A., Ganiev T.A., Razrabotka matematicheskoy modeli rabochikh protsessov shtangovogo skvazhinnogo oborudovaniya dlya optimal'nogo soglasovaniya parametrov nasosa, skvazhiny i svoystv dobyvaemoy zhidkosti (Development of a mathematical model of working processes of barrel equipment for optimal harmonization of pump parameters, wells and properties of the extracted liquid), Collected papers “Resursovosproizvodyashchie, malootkhodnye i prirodookhrannye tekhnologii osvoeniya nedr” (Resource- reproducing, low-waste and environmental technologies for the development of mineral resources), Proceedings of International scientific and practical conference, Aktay, 2018, pp. 151–153.

14. Urazakov K.R., Bakhtizin R.N., Ismagilov S.F., Topol'nikov A.S., Theoretical dynamometer card calculation taking into account complications in the sucker rod pump operation (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 1, pp. 90–93.

15. Urazakov K.R., Dmitriev V.V., Buranchin A.R.et al., Pump pipes deformation influence on rate of production and the interrepair period of wells (In Russ.), Neftegazovoe delo, 2009, no. 1, pp. 15–19.

Today, the dual completion of wells with sucker-rod pumping units has become widespread, which allows to significantly increase the technical and economic efficiency of development by combining the facilities in operation. The peculiarities of mechanized oil production in this category of wells are due to a number of common complications arising during the operation and contributing to an increase in the intensity of pumping equipment operation and a decrease in the turnaround time, a decrease in well flow, which leads to a decrease in the efficiency of production in general. In these conditions, the most important tasks of cost-effective development are maintaining in working condition and ensuring optimal operating conditions for pumping equipment.

The article presents a mathematical model of a sucker-rod pumping unit for the dual completion, taking into account complications in the operation of downhole equipment. The proposed model due to a detailed account of the mechanism of formation of downhole processes allows to simulate the effect of complicating factors, such as the effect of gas, high viscosity of pumped products, leaks in valves, etc. By modeling the dynamograms, considering complications and malfunctions in the operation of the pumping unit, the analysis of the influence of complicating factors on the configuration of the model dynamograms was carried out. The proposed mathematical model can be used as a tool for diagnosing the technical condition of sucker-rod pumping units from the actual dynamogram by comparing it with the model ones.

References

1. Ibragimov N.G., Fadeev V.G., Zabbarov R.G. et al., New technology of dual-completion operation, developed in Tatneft OAO (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2008, no. 7, pp. 79–81.

2. Nurgaliev, A.A., Khabibullin L.T., Analysis of the efficiency of simultaneous-separate well operation in the South-East of the Republic of Tatarstan (In Russ.), Interekspo Geo-Sibir', 2016, no. 3(2), pp. 230–233.

3. Kadyrov A.Kh., Glukhoded A.V., Installations of dual production for the wells with small diameter (In Russ.), Inzhenernaya praktika, 2017, no. 6, pp. 4–11.

4. Gabert R.F., Ghneim G.J., Procedures and practices of dual completion design in Abu Dhabi, SPE 17983-PA, 1991, V. 6, no. 1, pp. 44–49, https://doi.org/10.2118/17983-PA

5. Muhammad I.K., Raymond E.P., Mohd S.J., Collaboration in extracting more oil in mature dual completion wells, SPE 124443-MS, 2009, https://doi.org/10.2118/124443-MS.

6. Swisher M.D., Wojtanowicz A.K., New dual completion method eliminates bottom water coning, SPE 30697-MS, 1995, https://doi.org/10.2118/30697-MS.

7. Patent no. 2377395 RF, MPK E 21 B 43/14, Equipment for simultaneous-separate process of two reservoirs of single well, Inventors: Garifov K.M., Ibragimov N.G., Fadeev V.G., Akhmetvaliev R.N., Kadyrov A.Kh., Rakhmanov I.N., Glukhoded A.V., Balboshin V.A.

8. Tret'yakov D.L., Results of technology implementation of simultaneous-separate production with gas exhaust system from the bottom horizon in wells of Belorusneft (In Russ.), Inzhenernaya praktika, 2016, no. 5, pp. 58–32.

9. Gaddy D.E., Dual compietions provide production alternative in Russian venture, Oil and Gas Journal, 2005, V. 103 (14), pp. 43–47.

10. Garifov K.M., Kadyrov A.H., Ibragimov N.G., Fadeev V.G., Zabbarov R.G., Advances in dual completion technology in Tatneft OAO (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2013, no. 7, pp. 44–47.

11. Garifov K.M., Tatneft: Technologies of dual completion (In Russ.), Neftegazovaya Vertikal', 2011, no. 13–14, pp. 114–117.

12. Patent no. 2221136 RF, Installation for separate operation of two formations simultaneously, Inventors: Ibragimov N.G., Garifov K.M., Fadeev V.G., Avramenko A.N., Ibatullin V.M., Valovskiy A.FI., Kadyrov A.F.

13. Valitov M.Z., Boltneva Yu.A., Ganiev T.A., Razrabotka matematicheskoy modeli rabochikh protsessov shtangovogo skvazhinnogo oborudovaniya dlya optimal'nogo soglasovaniya parametrov nasosa, skvazhiny i svoystv dobyvaemoy zhidkosti (Development of a mathematical model of working processes of barrel equipment for optimal harmonization of pump parameters, wells and properties of the extracted liquid), Collected papers “Resursovosproizvodyashchie, malootkhodnye i prirodookhrannye tekhnologii osvoeniya nedr” (Resource- reproducing, low-waste and environmental technologies for the development of mineral resources), Proceedings of International scientific and practical conference, Aktay, 2018, pp. 151–153.

14. Urazakov K.R., Bakhtizin R.N., Ismagilov S.F., Topol'nikov A.S., Theoretical dynamometer card calculation taking into account complications in the sucker rod pump operation (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 1, pp. 90–93.

15. Urazakov K.R., Dmitriev V.V., Buranchin A.R.et al., Pump pipes deformation influence on rate of production and the interrepair period of wells (In Russ.), Neftegazovoe delo, 2009, no. 1, pp. 15–19.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

13.11.2019
08.11.2019
30.10.2019