Логин:
Пароль:
Регистрация
Забыли свой пароль?

Formation of requirements to reliability and security of the exploited sections of the linear part of trunk pipelines transportation of oil and oil products

UDK: 622.692.4
DOI: 10.24887/0028-2448-2019-6-106-112
Key words: formation, requirement, reliability, safety, operation, section, linear part, main pipeline, transport, oil, oil products
Authors: D.A. Neganov (The Pipeline Transport Institute LLC, RF, Moscow), N.A. Makhutov (The Pipeline Transport Institute LLC, RF, Moscow), N.E. Zorin (The Pipeline Transport Institute LLC, RF, Moscow)

The modern stage of development of regulation of safety of potentially dangerous objects at the international and national level requires justification, maintenance, control and maintenance of the optimal total socio-economic costs of quantitative safety indicators. To ensure the reliability of transportation of the pumped product and the safety of operation of the existing main pipeline system, a set of measures is being implemented that allows to effectively affect areas where there was a loss of bearing capacity, thereby reducing the accident rate by timely elimination of dangerous defects. However, it is difficult to quantify the technical condition of pipeline sections and to quantify the adequacy, efficiency and economic optimality of the developed measures. As a result, there are no necessary regulatory requirements for the reliability and safety of the pipeline system and its components.

The article considers possible approaches to the quantitative assessment and analysis of reliability, safety and risk parameters of oil trunk pipelines and shows that taking into account the available information on the actual technical condition of objects, loading parameters, operating conditions, the current system of diagnostics and software and information support of the operation process, the most promising is the combination of deterministic and probabilistic methods of analysis.

On the basis of the developed calculation schemes, the possible basic probability criteria for assessing reliability and safety are determined. Two main approaches to the formation of requirements for reliability and safety are formulated: the establishment of permissible levels (frequency, probability) of emergency situations, comparison with the actual level and its consistent reduction due to the relevant organizational and technical measures and ensuring the optimal combination of costs for ensuring and improving safety and possible damage from accidents and incidents during the operation of the sections of the linear part of the main pipelines. In the future, the procedure for assessing the functional and strength reliability, risk and safety of pipeline systems should cover all stages of the life cycle of objects.

References

1. Bezopasnost' Rossii. Pravovye, sotsial'no-ekonomicheskie i nauchno-tekhnicheskie aspekty. Analiz riskov i upravlenie bezopasnost'yu (Security of Russia. Legal, socio-economic and scientific-technical aspects. Risk analysis and security management): edited by Makhutov N.A., Pulikovskiy K.B., Shoygu S.K., Moscow: Znanie Publ., 2008, 672 p.

2. Akimov V.A., Lesnykh V.V., Radaev N.N., Osnovy analiza i upravleniya riskom v prirodnoy i tekhnogennoy sferakh (Osnovy analiza i upravleniya riskom v prirodnoy i tekhnogennoy sferakh), Moscow: Delovoy ekspress Publ., 2002, 352 p.

3. Elokhin A.N., Analiz i upravlenie riskom: teoriya i praktika (Analysis and risk management: Theory and practice), Moscow: PoliMedia Publ., 2002, 192 p.

4. Makhutov N.A., Nauchno-metodicheskie podkhody i razrabotka mer po obespecheniyu zashchishchennosti kriticheski vazhnykh dlya natsional'noy bezopasnosti ob"ektov infrastruktury ot ugroz tekhnogennogo i prirodnogo kharaktera (In Russ.), Problemy bezopasnosti i chrezvychaynykh situatsiy, 2004, no. 1, pp. 37–48.

5. Martynyuk V.F., Pisarev M.V., Klovach E.V., Sidorov V.I., Risk analysis and regulatory support (In Russ.), Bezopasnost' truda v promyshlennosti, 1995, no. 11, pp. 55–62.

6. Brushlinskiy N.N., Klepko E.A., To the question of calculating risks (In Russ.), Problemy bezopasnosti i chrezvychaynykh situatsiy, 2004, no. 1, pp. 71–73.

7. Mazur I.I., Ivantsov O.M., Bezopasnost' truboprovodnykh sistem (Safety of pipeline systems), Moscow: Elima Publ., 2004, 1104 p.

8. Lisanov M.V., Grazhdankin A.I., Pchel'nikov A.V. et al., Analysis of the risk of accidents on the oil pipeline systems “Druzhba” (In Russ.), Bezopasnost' truda v promyshlennosti, 2006, no. 1, pp. 34–40.

9. Lisanov M.V., Savina A.V., Degtyarev D.V., Samuseva E.A., Analysis of Russian and foreign data on accidents at pipeline transportation facilities (In Russ.), Bezopasnost' truda v promyshlennosti, 2010, no. 7, pp. 16–22.

10. Lisanov M.V., Sumskoy S.I., Savina A.V. et al., Analysis of the risk of accidents on the main oil pipelines in the justification of design solutions that compensate for deviations from current safety requirements (In Russ.), Bezopasnost' truda v promyshlennosti, 2010, no. 3, pp. 58–66.

11. Agapov A.A., Lisanov M.V., Pecherkin A.S. et al., Modelirovanie avariynykh situatsiy na opasnykh proizvodstvennykh ob"ektakh. Programmnyy kompleks TOKSI+ (Versiya 3.0). Seriya 27. Deklarirovanie promyshlennoy bezopasnosti i otsenka riska (Simulation of emergency situations at hazardous production facilities. Software complex TOXI + (Version 3.0). Series 27. Industrial Safety Declaration and Risk Assessment), Moscow: Publ. of Scientific and Technical Center for Industrial Safety, 2006, 252 p.

12. Muhlbauer W.K., Pipeline risk management. Manual ideas, techniques, and resources, Gulf Professional Publishing, 2004, 395 p.

13. Dadonov Yu.A., Lisanov M.V., Grazhdankin A.I. et al., Risk assessment of accidents on trunk pipelines CPC-R and BTS (In Russ.), Bezopasnost' truda v promyshlennosti, 2002, no. 6, pp. 2–6.

14. Makhutov N.A., Prochnost' i bezopasnost': fundamental'nye i prikladnye issledovaniya (Strength and safety: fundamental and applied research), Novosibirsk: Nauka Publ., 2008, 528 p.

15. Rzhanitsyn A.R., Teoriya rascheta stroitel'nykh konstruktsiy na nadezhnosti (The theory of calculation of building structures on reliability), Moscow: Stroyizdat Publ., 1978, 239 p.

16. Bolotin V.V., Prognozirovanie resursa mashin i konstruktsiy (Forecasting the resource of machines and structures), Moscow: Mashinostroenie Publ., 1984, 312 p.

17. Lebedeva A.S., Aladinskiy V.V., Calculation of indicators of reliability of the linear part of pipelines based on the results of diagnostic studies (In Russ.), Avtomatizatsiya, telemekhanika i svyaz' v neftyanoy promyshlennosti, 2008, no. 6, pp. 33–36.

18. Radionova S.G., Revel-Muroz P.A., Lisin Yu.V. et al., Scientific-technical, socio-economic and legal aspects of oil and oil products transport reliability (In Russ.), Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation, 2016, no. 5 (25), pp. 20–31.

19. Diggory I., Taylor K., Zero incidents – a realistic target for the pipeline industry, Technology for Future and Ageing Pipelines Conference: Papers of Technology for Future and Ageing Pipelines Conference Het Pand, Gent 11–12 April 2018, Gent: Gent University, 2018, pp. 149–162.

The modern stage of development of regulation of safety of potentially dangerous objects at the international and national level requires justification, maintenance, control and maintenance of the optimal total socio-economic costs of quantitative safety indicators. To ensure the reliability of transportation of the pumped product and the safety of operation of the existing main pipeline system, a set of measures is being implemented that allows to effectively affect areas where there was a loss of bearing capacity, thereby reducing the accident rate by timely elimination of dangerous defects. However, it is difficult to quantify the technical condition of pipeline sections and to quantify the adequacy, efficiency and economic optimality of the developed measures. As a result, there are no necessary regulatory requirements for the reliability and safety of the pipeline system and its components.

The article considers possible approaches to the quantitative assessment and analysis of reliability, safety and risk parameters of oil trunk pipelines and shows that taking into account the available information on the actual technical condition of objects, loading parameters, operating conditions, the current system of diagnostics and software and information support of the operation process, the most promising is the combination of deterministic and probabilistic methods of analysis.

On the basis of the developed calculation schemes, the possible basic probability criteria for assessing reliability and safety are determined. Two main approaches to the formation of requirements for reliability and safety are formulated: the establishment of permissible levels (frequency, probability) of emergency situations, comparison with the actual level and its consistent reduction due to the relevant organizational and technical measures and ensuring the optimal combination of costs for ensuring and improving safety and possible damage from accidents and incidents during the operation of the sections of the linear part of the main pipelines. In the future, the procedure for assessing the functional and strength reliability, risk and safety of pipeline systems should cover all stages of the life cycle of objects.

References

1. Bezopasnost' Rossii. Pravovye, sotsial'no-ekonomicheskie i nauchno-tekhnicheskie aspekty. Analiz riskov i upravlenie bezopasnost'yu (Security of Russia. Legal, socio-economic and scientific-technical aspects. Risk analysis and security management): edited by Makhutov N.A., Pulikovskiy K.B., Shoygu S.K., Moscow: Znanie Publ., 2008, 672 p.

2. Akimov V.A., Lesnykh V.V., Radaev N.N., Osnovy analiza i upravleniya riskom v prirodnoy i tekhnogennoy sferakh (Osnovy analiza i upravleniya riskom v prirodnoy i tekhnogennoy sferakh), Moscow: Delovoy ekspress Publ., 2002, 352 p.

3. Elokhin A.N., Analiz i upravlenie riskom: teoriya i praktika (Analysis and risk management: Theory and practice), Moscow: PoliMedia Publ., 2002, 192 p.

4. Makhutov N.A., Nauchno-metodicheskie podkhody i razrabotka mer po obespecheniyu zashchishchennosti kriticheski vazhnykh dlya natsional'noy bezopasnosti ob"ektov infrastruktury ot ugroz tekhnogennogo i prirodnogo kharaktera (In Russ.), Problemy bezopasnosti i chrezvychaynykh situatsiy, 2004, no. 1, pp. 37–48.

5. Martynyuk V.F., Pisarev M.V., Klovach E.V., Sidorov V.I., Risk analysis and regulatory support (In Russ.), Bezopasnost' truda v promyshlennosti, 1995, no. 11, pp. 55–62.

6. Brushlinskiy N.N., Klepko E.A., To the question of calculating risks (In Russ.), Problemy bezopasnosti i chrezvychaynykh situatsiy, 2004, no. 1, pp. 71–73.

7. Mazur I.I., Ivantsov O.M., Bezopasnost' truboprovodnykh sistem (Safety of pipeline systems), Moscow: Elima Publ., 2004, 1104 p.

8. Lisanov M.V., Grazhdankin A.I., Pchel'nikov A.V. et al., Analysis of the risk of accidents on the oil pipeline systems “Druzhba” (In Russ.), Bezopasnost' truda v promyshlennosti, 2006, no. 1, pp. 34–40.

9. Lisanov M.V., Savina A.V., Degtyarev D.V., Samuseva E.A., Analysis of Russian and foreign data on accidents at pipeline transportation facilities (In Russ.), Bezopasnost' truda v promyshlennosti, 2010, no. 7, pp. 16–22.

10. Lisanov M.V., Sumskoy S.I., Savina A.V. et al., Analysis of the risk of accidents on the main oil pipelines in the justification of design solutions that compensate for deviations from current safety requirements (In Russ.), Bezopasnost' truda v promyshlennosti, 2010, no. 3, pp. 58–66.

11. Agapov A.A., Lisanov M.V., Pecherkin A.S. et al., Modelirovanie avariynykh situatsiy na opasnykh proizvodstvennykh ob"ektakh. Programmnyy kompleks TOKSI+ (Versiya 3.0). Seriya 27. Deklarirovanie promyshlennoy bezopasnosti i otsenka riska (Simulation of emergency situations at hazardous production facilities. Software complex TOXI + (Version 3.0). Series 27. Industrial Safety Declaration and Risk Assessment), Moscow: Publ. of Scientific and Technical Center for Industrial Safety, 2006, 252 p.

12. Muhlbauer W.K., Pipeline risk management. Manual ideas, techniques, and resources, Gulf Professional Publishing, 2004, 395 p.

13. Dadonov Yu.A., Lisanov M.V., Grazhdankin A.I. et al., Risk assessment of accidents on trunk pipelines CPC-R and BTS (In Russ.), Bezopasnost' truda v promyshlennosti, 2002, no. 6, pp. 2–6.

14. Makhutov N.A., Prochnost' i bezopasnost': fundamental'nye i prikladnye issledovaniya (Strength and safety: fundamental and applied research), Novosibirsk: Nauka Publ., 2008, 528 p.

15. Rzhanitsyn A.R., Teoriya rascheta stroitel'nykh konstruktsiy na nadezhnosti (The theory of calculation of building structures on reliability), Moscow: Stroyizdat Publ., 1978, 239 p.

16. Bolotin V.V., Prognozirovanie resursa mashin i konstruktsiy (Forecasting the resource of machines and structures), Moscow: Mashinostroenie Publ., 1984, 312 p.

17. Lebedeva A.S., Aladinskiy V.V., Calculation of indicators of reliability of the linear part of pipelines based on the results of diagnostic studies (In Russ.), Avtomatizatsiya, telemekhanika i svyaz' v neftyanoy promyshlennosti, 2008, no. 6, pp. 33–36.

18. Radionova S.G., Revel-Muroz P.A., Lisin Yu.V. et al., Scientific-technical, socio-economic and legal aspects of oil and oil products transport reliability (In Russ.), Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation, 2016, no. 5 (25), pp. 20–31.

19. Diggory I., Taylor K., Zero incidents – a realistic target for the pipeline industry, Technology for Future and Ageing Pipelines Conference: Papers of Technology for Future and Ageing Pipelines Conference Het Pand, Gent 11–12 April 2018, Gent: Gent University, 2018, pp. 149–162.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

03.03.2021
25.02.2021
16.02.2021