Логин:
Пароль:
Регистрация
Забыли свой пароль?

Simulating operation of sucker rod pumping unit

UDK: 622.276.53.001.57
DOI: 10.24887/0028-2448-2019-1-70-74
Key words: sucker rod pump, dynacard, watt metrogram, simulation
Authors: V.B. Sadov (South Ural State University, RF, Chelyabinsk)

The issue of synthesis of models of the well – oil well pump system is considered taking into account the characteristics of the mechanical part of the pumping unit and the drive. This model allows to obtain dynacards and wattmeterograms, which is important when using it to develop diagnostic and control algorithms. An example of using the mechanics of a traditional sucker rod pumping unit is given. The necessary formulas for modeling the oil production process are presented. The obtained model can serve as a basis for virtual and physical stands for testing the algorithms for controlling and diagnosing sucker rod pumping unit and testing the efficiency of their control systems. Conclusions are made about the applicability of this approach to the synthesis of models and for other types of actuators of sucker rod pumping unit. All necessary formulas for modelling process of oil extraction are given. Results of modelling of system taking into account characteristics of a mechanical part of pumping unit and drive characteristics are presented. Moment components on an electric motor shaft are considered. It is shown that absence of even one component of this moment leads to essential errors of transformation of the data wattmeterograms in the data dynacards. The conclusion is made that for exact transformation of the data wattmeterograms in the dynacards it is necessary to consider enough great number of parameters of a mechanical part of the machine tool-rocking chair that existing methods of the given transformation yet do not provide is drawn. Recommendations on the use of dynacards and wattmetrograms are made.

References

1. URL: http://www.danfoss.com/NR/rdonlyres/90BCF710-9C97-4F9C-9EF5-F9274DA9A842/0/salt_broshyura.pdf.

2. Krichke V.O., Krichke V.V., Groman A.O., A new era in the management of pumping complexes (In Russ.), Sovremennye naukoemkie tekhnologii, 2009, no. 1, pp. 20–23.

3. Tagirova K.F., Vul'fin A.M., Ramazanov A.R., Fatkulov A.A., Improving the efficiency of operation of sucker-rod pumping unit (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 7, pp. 82–85.

4. Guluev G.A., Pashaev A.B., Pashaev F.G. et al., The Algorithm of determination of rod force from power consumption of the electric drive in the operating pumping unit (In Russ.), Mekhatronika, avtomatizatsiya, upravlenie, 2012, no. 11, pp. 55–58.

5. Zubairov I.F., Smart well - improving the efficiency of artificial lift (In Russ.), Inzhenernaya praktika, 2011, no. 5, pp. 84–89.

6. Gibbs S.G., Neely A.B., Computer diagnosis of down-hole conditions in sucker rod pumping wells, Journal of Petroleum Technology, 1966, V. 18, no. 1, pp. 91–98.

7. Gibbs S.G., Predicting the behavior of sucker-rod pumping systems, SPE-588-PA, 1963.

8. Kas'yanov V.M., Analiticheskiy metod kontrolya raboty glubinnykh shtangovykh nasosov (Analytical method of controlling the operation of submersible sucker rod pumps), Moscow: Publ. of VNIIOENG, 1973, 95 p.

9. Urazakov K.R., Bakhtizin R.N., Ismagilov S.F., Topol'nikov A.S., Theoretical dynamometer card calculation taking into account complications in the sucker rod pump operation (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 1, pp. 90–93.

10. Urazakov K.R., Latypov B.M., Komkov A.G., Research of efficiency of differential Rod pumps for extraction of high-viscosity oil (In Russ.), Territoriya NEFTEGAZ, 2018, no. 5, pp. 34–40.

11. Kovshov V.D., Sidorov M.E., Svetlakova S.V., Simulation of beam pumping unit dynamometer. Normal pump operation (In Russ.), Neftegazovoe delo, 2004, no. 2, pp. 75–81.

12. Kovshov V.D., Sidorov M.E., Svetlakova S.V., Dynamometer test, modeling and diagnostics of the state of sucker rod pumping unit (In Russ.), Izvestiya vuzov. Neft' i gaz, 2011, no. 3, pp. 25–29.

13. Sadov V.B., Simulation of dynamometer cards with various defects of oil well equipment (In Russ.), Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Komp'yuternye tekhnologii, upravlenie, radioelektronika, 2013, V. 13, no. 1, pp. 16–25.

14. Firago B.I., Pavlyachik L.B., Reguliruemye elektroprivody peremennogo toka (Adjustable AC drives), Minsk: Tekhnoperspektiva Publ., 2006, 363 p.

15. Veshenevskiy S.N., Kharakteristiki dvigateley v elektroprivode (Characteristics of engines in the drive), Moscow: Energiya Publ., 1977, 432 p.

The issue of synthesis of models of the well – oil well pump system is considered taking into account the characteristics of the mechanical part of the pumping unit and the drive. This model allows to obtain dynacards and wattmeterograms, which is important when using it to develop diagnostic and control algorithms. An example of using the mechanics of a traditional sucker rod pumping unit is given. The necessary formulas for modeling the oil production process are presented. The obtained model can serve as a basis for virtual and physical stands for testing the algorithms for controlling and diagnosing sucker rod pumping unit and testing the efficiency of their control systems. Conclusions are made about the applicability of this approach to the synthesis of models and for other types of actuators of sucker rod pumping unit. All necessary formulas for modelling process of oil extraction are given. Results of modelling of system taking into account characteristics of a mechanical part of pumping unit and drive characteristics are presented. Moment components on an electric motor shaft are considered. It is shown that absence of even one component of this moment leads to essential errors of transformation of the data wattmeterograms in the data dynacards. The conclusion is made that for exact transformation of the data wattmeterograms in the dynacards it is necessary to consider enough great number of parameters of a mechanical part of the machine tool-rocking chair that existing methods of the given transformation yet do not provide is drawn. Recommendations on the use of dynacards and wattmetrograms are made.

References

1. URL: http://www.danfoss.com/NR/rdonlyres/90BCF710-9C97-4F9C-9EF5-F9274DA9A842/0/salt_broshyura.pdf.

2. Krichke V.O., Krichke V.V., Groman A.O., A new era in the management of pumping complexes (In Russ.), Sovremennye naukoemkie tekhnologii, 2009, no. 1, pp. 20–23.

3. Tagirova K.F., Vul'fin A.M., Ramazanov A.R., Fatkulov A.A., Improving the efficiency of operation of sucker-rod pumping unit (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 7, pp. 82–85.

4. Guluev G.A., Pashaev A.B., Pashaev F.G. et al., The Algorithm of determination of rod force from power consumption of the electric drive in the operating pumping unit (In Russ.), Mekhatronika, avtomatizatsiya, upravlenie, 2012, no. 11, pp. 55–58.

5. Zubairov I.F., Smart well - improving the efficiency of artificial lift (In Russ.), Inzhenernaya praktika, 2011, no. 5, pp. 84–89.

6. Gibbs S.G., Neely A.B., Computer diagnosis of down-hole conditions in sucker rod pumping wells, Journal of Petroleum Technology, 1966, V. 18, no. 1, pp. 91–98.

7. Gibbs S.G., Predicting the behavior of sucker-rod pumping systems, SPE-588-PA, 1963.

8. Kas'yanov V.M., Analiticheskiy metod kontrolya raboty glubinnykh shtangovykh nasosov (Analytical method of controlling the operation of submersible sucker rod pumps), Moscow: Publ. of VNIIOENG, 1973, 95 p.

9. Urazakov K.R., Bakhtizin R.N., Ismagilov S.F., Topol'nikov A.S., Theoretical dynamometer card calculation taking into account complications in the sucker rod pump operation (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 1, pp. 90–93.

10. Urazakov K.R., Latypov B.M., Komkov A.G., Research of efficiency of differential Rod pumps for extraction of high-viscosity oil (In Russ.), Territoriya NEFTEGAZ, 2018, no. 5, pp. 34–40.

11. Kovshov V.D., Sidorov M.E., Svetlakova S.V., Simulation of beam pumping unit dynamometer. Normal pump operation (In Russ.), Neftegazovoe delo, 2004, no. 2, pp. 75–81.

12. Kovshov V.D., Sidorov M.E., Svetlakova S.V., Dynamometer test, modeling and diagnostics of the state of sucker rod pumping unit (In Russ.), Izvestiya vuzov. Neft' i gaz, 2011, no. 3, pp. 25–29.

13. Sadov V.B., Simulation of dynamometer cards with various defects of oil well equipment (In Russ.), Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Komp'yuternye tekhnologii, upravlenie, radioelektronika, 2013, V. 13, no. 1, pp. 16–25.

14. Firago B.I., Pavlyachik L.B., Reguliruemye elektroprivody peremennogo toka (Adjustable AC drives), Minsk: Tekhnoperspektiva Publ., 2006, 363 p.

15. Veshenevskiy S.N., Kharakteristiki dvigateley v elektroprivode (Characteristics of engines in the drive), Moscow: Energiya Publ., 1977, 432 p.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

16.08.2019
14.08.2019
12.08.2019
SPE 2019
ТАТАРСТАНСКИЙ НЕФТЕГАЗОХИМИЧЕСКИЙ ФОРУМ