Логин:
Пароль:
Регистрация
Забыли свой пароль?

Efficiency evaluation in applying forced fluid recovery and operation of wells with horizontal completion in hydrocarbon high-productive and high-viscous reservoirs

UDK: 622.276.1/4"712.8"
DOI: 10.24887/0028-2448-2018-8-34-38
Key words: high viscous (heavy) oil, forced fluid recovery, high-productive, infill well drilling, lateral horizontal well-bores
Authors: E.K. Solozhenkina (SamaraNIPIneft LLC, RF, Samara), S.V. Demin (SamaraNIPIneft LLC, RF, Samara), E,V. Shigaeva (SamaraNIPIneft LLC, RF, Samara), D.V. Kashaev (Samaraneftegas JSC, RF, Samara), I.A. Sereda (Rosneft Oil Company, RF, Moscow)

Nowadays the problem of increasing oil recovery factor from the reservoirs being at the late stage of their development is a very acute one. Basing at the example of high-permeable pay of Bobrikovskian horizon saturated with high-viscous oil we illustrate the efficiency in applying the enhanced fluid recovery methods. It is scientifically proved that the procedure of fluid forced recovery (FFR) is one of the most effective and efficient methods in stimulating oil recovery and reducing the fluid rate drop; this procedure also gives the increase in reservoir sweep displacement efficiency. But the nature of reservoir physical and chemical properties, the parameters of well water-cut, at what stage of reservoir development we can get the highest process effect while using the methods of FFR as well as the influence of FFR upon the oil recovery rate are still in doubts by now.

The procedure used at the considered object was initiated at the end of drilling-out stage, when we have seen the significant drop in oil productivity rate and faced the problem of high water-cutting at the stage of oil production. The application of FFR procedure from wells and the growth in oil water-cut quickly enabled to neutralize the effect of water-oil mixture viscosity growth in a process of its displacement. The method to evaluate the FFR efficiency through the multiple oil and fluid production rate increase verifies its high practical application effectiveness. Application of FFR procedure at all the stages of object development process enabled not only to increase well productivity rates and, respectively, annual oil production rates, as is proved by extrapolation empirical method of field development monitoring, but also to increase oil recovery factor. The confidence in geological structure, the amount of OOIP in considered reservoir, the detailed study of object heterogeneity and adequate evaluation of physical and chemical properties of reservoir fluid permitted us to use a set of hydro-dynamic development methods at pay B-2, including water-flooding, FFR and horizontal bore-hole drilling that finally resulted in reaching high oil recovery factor.

References

1. Ponomarev A.G., Sazonov B.F., Berezhnaya G.N. et al., Obobshchenie metodov razrabotki neftyanykh mestorozhdeniy v pozdney stadii i ikh prakticheskoe vnedrenie na mestorozhdeniya OAO “Samaraneftegaz” (Generalization of methods for the development of oil fields in the late stage and its practical implementation on the fields of OJSC "Samaraneftegaz"), Samara, 2010.

2. Sazonov B.F., Ponomarev A.G., Nemkov A.S., Pozdnyaya stadiya razrabotki neftyanykh mestorozhdeniy (The late stage of development of oil fields), Samara: Kniga Publ., 2008, 350 p.

3. Nemkov A.S., Kolganov V.I., Kovaleva G.A., The analysis of application of the forced selection of liquid on fields of energy industry of high-viscosity oil of the Samara region (In Russ.), Tekhnologii TEK, 2006, no. 1.

4. Fomina A.A., Povyshenie effektivnosti forsirovannogo otbora zhidkosti iz peschanykh kollektorov na primere neftyanykh mestorozhdeniy Samarskoy oblasti (Increase in the efficiency of forced fluid withdrawal from sand collectors by the example of oil fields of the Samara Region): thesis of candidate of technical science, Samara, 2009.

5. Ol'khovskaya V.A., Povyshenie effektivnosti FOZh po zalezham so srednevyazkimi neftyami na primere mestorozhdeniy Kuybyshevskoy oblasti (Increase of efficiency of the forced fluid withdrawal on deposits with medium viscosity oil on the example of deposits of Kuibyshev region): thesis of candidate of technical science, Ufa, 1994.

Nowadays the problem of increasing oil recovery factor from the reservoirs being at the late stage of their development is a very acute one. Basing at the example of high-permeable pay of Bobrikovskian horizon saturated with high-viscous oil we illustrate the efficiency in applying the enhanced fluid recovery methods. It is scientifically proved that the procedure of fluid forced recovery (FFR) is one of the most effective and efficient methods in stimulating oil recovery and reducing the fluid rate drop; this procedure also gives the increase in reservoir sweep displacement efficiency. But the nature of reservoir physical and chemical properties, the parameters of well water-cut, at what stage of reservoir development we can get the highest process effect while using the methods of FFR as well as the influence of FFR upon the oil recovery rate are still in doubts by now.

The procedure used at the considered object was initiated at the end of drilling-out stage, when we have seen the significant drop in oil productivity rate and faced the problem of high water-cutting at the stage of oil production. The application of FFR procedure from wells and the growth in oil water-cut quickly enabled to neutralize the effect of water-oil mixture viscosity growth in a process of its displacement. The method to evaluate the FFR efficiency through the multiple oil and fluid production rate increase verifies its high practical application effectiveness. Application of FFR procedure at all the stages of object development process enabled not only to increase well productivity rates and, respectively, annual oil production rates, as is proved by extrapolation empirical method of field development monitoring, but also to increase oil recovery factor. The confidence in geological structure, the amount of OOIP in considered reservoir, the detailed study of object heterogeneity and adequate evaluation of physical and chemical properties of reservoir fluid permitted us to use a set of hydro-dynamic development methods at pay B-2, including water-flooding, FFR and horizontal bore-hole drilling that finally resulted in reaching high oil recovery factor.

References

1. Ponomarev A.G., Sazonov B.F., Berezhnaya G.N. et al., Obobshchenie metodov razrabotki neftyanykh mestorozhdeniy v pozdney stadii i ikh prakticheskoe vnedrenie na mestorozhdeniya OAO “Samaraneftegaz” (Generalization of methods for the development of oil fields in the late stage and its practical implementation on the fields of OJSC "Samaraneftegaz"), Samara, 2010.

2. Sazonov B.F., Ponomarev A.G., Nemkov A.S., Pozdnyaya stadiya razrabotki neftyanykh mestorozhdeniy (The late stage of development of oil fields), Samara: Kniga Publ., 2008, 350 p.

3. Nemkov A.S., Kolganov V.I., Kovaleva G.A., The analysis of application of the forced selection of liquid on fields of energy industry of high-viscosity oil of the Samara region (In Russ.), Tekhnologii TEK, 2006, no. 1.

4. Fomina A.A., Povyshenie effektivnosti forsirovannogo otbora zhidkosti iz peschanykh kollektorov na primere neftyanykh mestorozhdeniy Samarskoy oblasti (Increase in the efficiency of forced fluid withdrawal from sand collectors by the example of oil fields of the Samara Region): thesis of candidate of technical science, Samara, 2009.

5. Ol'khovskaya V.A., Povyshenie effektivnosti FOZh po zalezham so srednevyazkimi neftyami na primere mestorozhdeniy Kuybyshevskoy oblasti (Increase of efficiency of the forced fluid withdrawal on deposits with medium viscosity oil on the example of deposits of Kuibyshev region): thesis of candidate of technical science, Ufa, 1994.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

06.12.2019
05.12.2019
04.12.2019