Логин:
Пароль:
Регистрация
Забыли свой пароль?

Modeling of sedimentation phenomena of asphalt-resin substances in the process of production, transporting and preparation of oil

Authors: G.I. Kelbaliyev, G.Z. Suleymanov (Institute of Catalysis and Inorganic Chemistry, ANAS, Azerbaijan, Baku), R.N.Bakhtizin (Academy of Science of the Republic of Bashkortostan, RF, Ufa), Ab.G.Rzayev (Institute of Control Systems, ANAS, Azerbaijan, Baku), S.R. Rasulov, L.V. Guseynova (Azerbaijan State Oil Academy, Azerbaijan, Baku)

Key words: sedimentation speed, migration-gravitational mechanism, diffusion process, mass-transfer adsorption layer, oil emulsion.

Condition and mechanism of sedimentation of asphalten-resin substances in the processes of production, transporting and preparation of oil have been analyzed in the given investigation. Models of description of sedimentation processes of asphalten-resin substances in horizontal and vertical conveying pipes, models of change of porosity in oil layers and on the surface of water in oil emulsion have been offered. It has been mentioned that mainly mechanism of sedimentation of particles is characterized by migration-diffusion transfer of the particles to the surface in laminar and turbulent flow. Possible variants of comparison of experimental and calculation values have been shown.
References
1. Ivanova L.V., Burov E.A., Koshelev V.N., Asphaltene-resin-paraffin deposits in the processes of oil pro-duction, transportation and storage
(In Russ.), Elektronnyy nauchnyy zhurnal “Neftegazovoe delo” = The electronic scientific journal Oil and Gas Business, 2011, no. 1, URL:
http://ogbus.ru/authors/IvanovaLV/IvanovaLV_1.pdf
2. Mirzayi B., Mousavi-Dehghani S.A., Behruz–Chakan M., Modeling of asphaltene deposition in pipeline, Petroleum Science and Technology, 2013,
V. 3, no. 2, pp. 15–23.
3. Alexander L.G., Coldern C.L., Droplet transfer suspending air to duct walls,
Ind. and Eng. Chem, 1951, V. 43, no. 6, pp. 1325в€’1331.
4. Montgomery T.L., Corn M.V., Aerosol deposition in a pipe with turbulent air flow, J. Aerosol Sci., 1970, V.1, no. 30, pp. 185в€’213
5. Sarimeseli A., Kelbaliyev G.,Deposition of dispersed particles in isotropic turbulent flow, Dispersion Science and Technology, 2008, no. 29, pp. 307–315.
6. Kelbaliev G.I., Ibragimov Z.I., Kasimova R.K., Deposition of aerosol particles in vertical channels from an isotropic turbulent flow (In Russ.), Inzhenerno– fizicheskiy zhurnal = Journal of Engineering Physics and Thermophysics, 2010, V. 83, no. 5, pp. 1–9.
7. Kelbaliev G.I., Guseynova L.V., Rasulov S.R., Suleymanov G.Z., Modeling of process of different-nature particles precipitation on pipelines surface
(In Russ.), Neftepromyslovoe delo, 2014, no. 5, pp. 25–29.
8. Mednikov E.P., Turbulentnyy perenos i osazhdenie aerozoley (Turbulent
transport and aerosols depo-sition), Moscow: Nauka Publ., 1980, 176 p.
9. Sarimeseli A., Kelbaliyev G., Sedimentation of solid particles in turbulent
flow in horizontal channels, Powder Technology. Technology, 2004, no. 140,
pp. 79–85.
10. Laurinat J.E., Hanratty T.J., Film thickness distribution for gas-liquid annular in a horizontal pipe, Phys. Chem. Hydrodynamics, 1985, no. 5, pp. 179в€’195.
11. Ermakov S.A., Mordvinov A.A.,On the influence of asphaltenes on the stability of oil-water emulsions (In Russ.), Elektronnyy nauchnyy zhurnal “Neftegazovoe delo” = The electronic scientific journal Oil and Gas Business, 2007, no. 1, URL: http://ogbus.ru/authors/Ermakov/Ermakov_1.pdf.

Key words: sedimentation speed, migration-gravitational mechanism, diffusion process, mass-transfer adsorption layer, oil emulsion.

Condition and mechanism of sedimentation of asphalten-resin substances in the processes of production, transporting and preparation of oil have been analyzed in the given investigation. Models of description of sedimentation processes of asphalten-resin substances in horizontal and vertical conveying pipes, models of change of porosity in oil layers and on the surface of water in oil emulsion have been offered. It has been mentioned that mainly mechanism of sedimentation of particles is characterized by migration-diffusion transfer of the particles to the surface in laminar and turbulent flow. Possible variants of comparison of experimental and calculation values have been shown.
References
1. Ivanova L.V., Burov E.A., Koshelev V.N., Asphaltene-resin-paraffin deposits in the processes of oil pro-duction, transportation and storage
(In Russ.), Elektronnyy nauchnyy zhurnal “Neftegazovoe delo” = The electronic scientific journal Oil and Gas Business, 2011, no. 1, URL:
http://ogbus.ru/authors/IvanovaLV/IvanovaLV_1.pdf
2. Mirzayi B., Mousavi-Dehghani S.A., Behruz–Chakan M., Modeling of asphaltene deposition in pipeline, Petroleum Science and Technology, 2013,
V. 3, no. 2, pp. 15–23.
3. Alexander L.G., Coldern C.L., Droplet transfer suspending air to duct walls,
Ind. and Eng. Chem, 1951, V. 43, no. 6, pp. 1325в€’1331.
4. Montgomery T.L., Corn M.V., Aerosol deposition in a pipe with turbulent air flow, J. Aerosol Sci., 1970, V.1, no. 30, pp. 185в€’213
5. Sarimeseli A., Kelbaliyev G.,Deposition of dispersed particles in isotropic turbulent flow, Dispersion Science and Technology, 2008, no. 29, pp. 307–315.
6. Kelbaliev G.I., Ibragimov Z.I., Kasimova R.K., Deposition of aerosol particles in vertical channels from an isotropic turbulent flow (In Russ.), Inzhenerno– fizicheskiy zhurnal = Journal of Engineering Physics and Thermophysics, 2010, V. 83, no. 5, pp. 1–9.
7. Kelbaliev G.I., Guseynova L.V., Rasulov S.R., Suleymanov G.Z., Modeling of process of different-nature particles precipitation on pipelines surface
(In Russ.), Neftepromyslovoe delo, 2014, no. 5, pp. 25–29.
8. Mednikov E.P., Turbulentnyy perenos i osazhdenie aerozoley (Turbulent
transport and aerosols depo-sition), Moscow: Nauka Publ., 1980, 176 p.
9. Sarimeseli A., Kelbaliyev G., Sedimentation of solid particles in turbulent
flow in horizontal channels, Powder Technology. Technology, 2004, no. 140,
pp. 79–85.
10. Laurinat J.E., Hanratty T.J., Film thickness distribution for gas-liquid annular in a horizontal pipe, Phys. Chem. Hydrodynamics, 1985, no. 5, pp. 179в€’195.
11. Ermakov S.A., Mordvinov A.A.,On the influence of asphaltenes on the stability of oil-water emulsions (In Russ.), Elektronnyy nauchnyy zhurnal “Neftegazovoe delo” = The electronic scientific journal Oil and Gas Business, 2007, no. 1, URL: http://ogbus.ru/authors/Ermakov/Ermakov_1.pdf.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

06.12.2019
05.12.2019
04.12.2019