**Key words:** diverter technologies, interphase boundary motion, conformance control, Lambert W-Function.

References

1. Dake L.P., The Practice of reservoir engineering (Revised Edition), Elsevier

Science, 2001, 570 p.

2. Willhite G.P., Waterflooding, SPE Textbook Series, 1986.

3. Dubinov A.E., Dubinova I.D., Saykov S.K., W-funktsiya Lamberta i ee primenenie v matematicheskikh zadachakh fiziki (Lambert w function and its application in mathematical physics problems), Sarov: Publ. of RFYaTs-VNIIEF, 2006, 160 p.

4. Corless G.H., Gonnet R.M., Hare D.E.G. et al., On the lambert w function,

Advances in Computational Mathematics, 1996, V. 5, pp. 329–359.

5. Scott T.C., Fee G., Grotendorst J., Asymptotic series of generalized lambert

w function, IGSAM, ACM Special Interest Group in Symbolic and Algebraic

Manipulation, 2013, V. 47 (185), pp. 75–83.

6. Aziz K., Settari A., Petroleum reservoir simulation, Elsevier Applied Science

Publishers, 1986.

7. Dake L., Fundamentals of reservoir engineering, URL:

http://books.google.ru/books?id=grQAlQEACAAJ.

8. Chen Z., Reservoir simulation mathematical techniques in oil recovery,

Philadelphia: Society for industrial and applied mathematics, 2007, 250 r.

9. Craig F., Reservoir engineering aspects of waterflooding, H. L. Doherty

Memorial Fund of AIME, 1971, 164 p.

10. Muskat M., The flow of homogeneous fluids through porous media, Mc-

Graw-hill book company, Inc., 1937, 782 p.

11. Charnyy I.A., Podzemnaya gidrogazodinamika (Underground hydraulic

gas dynamics), Moscow – Leningrad: Gostoptekhizdat Publ., 1963, 396 p.

12. Leybenzon L.S., Dvizheniya prirodnykh zhidkostey i gazov v poristoy srede (Natural liquids and gases movement in a porous medium), Moscow –

Leningrad: OGIZ, Gosudarstvennoe tekhniko-teoreticheskoe izdatel'stvo

Publ., 1947, 244 p.

**Key words:** diverter technologies, interphase boundary motion, conformance control, Lambert W-Function.

References

1. Dake L.P., The Practice of reservoir engineering (Revised Edition), Elsevier

Science, 2001, 570 p.

2. Willhite G.P., Waterflooding, SPE Textbook Series, 1986.

3. Dubinov A.E., Dubinova I.D., Saykov S.K., W-funktsiya Lamberta i ee primenenie v matematicheskikh zadachakh fiziki (Lambert w function and its application in mathematical physics problems), Sarov: Publ. of RFYaTs-VNIIEF, 2006, 160 p.

4. Corless G.H., Gonnet R.M., Hare D.E.G. et al., On the lambert w function,

Advances in Computational Mathematics, 1996, V. 5, pp. 329–359.

5. Scott T.C., Fee G., Grotendorst J., Asymptotic series of generalized lambert

w function, IGSAM, ACM Special Interest Group in Symbolic and Algebraic

Manipulation, 2013, V. 47 (185), pp. 75–83.

6. Aziz K., Settari A., Petroleum reservoir simulation, Elsevier Applied Science

Publishers, 1986.

7. Dake L., Fundamentals of reservoir engineering, URL:

http://books.google.ru/books?id=grQAlQEACAAJ.

8. Chen Z., Reservoir simulation mathematical techniques in oil recovery,

Philadelphia: Society for industrial and applied mathematics, 2007, 250 r.

9. Craig F., Reservoir engineering aspects of waterflooding, H. L. Doherty

Memorial Fund of AIME, 1971, 164 p.

10. Muskat M., The flow of homogeneous fluids through porous media, Mc-

Graw-hill book company, Inc., 1937, 782 p.

11. Charnyy I.A., Podzemnaya gidrogazodinamika (Underground hydraulic

gas dynamics), Moscow – Leningrad: Gostoptekhizdat Publ., 1963, 396 p.

12. Leybenzon L.S., Dvizheniya prirodnykh zhidkostey i gazov v poristoy srede (Natural liquids and gases movement in a porous medium), Moscow –

Leningrad: OGIZ, Gosudarstvennoe tekhniko-teoreticheskoe izdatel'stvo

Publ., 1947, 244 p.