Логин:
Пароль:
Регистрация
Забыли свой пароль?

The solution of direct and inverse problems of hydrodynamics, when changing filtration-capacitive properties oil reservoir in the vicinity of the wellbore

Authors: V.N. Fedorov, D.R. Gizatullin (BashNIPIneft LLC, RF, Ufa)

Key words: permeability, porosity, build-up curve, skin effect, reservoir heterogeneity, near wellbore zone, diffusion, flow through equation.

The paper reviews the results from the research on the effect of formation damage in the near well bore area due to the flow of reservoir fluids with suspended fine particles on the behavior of pressure build-up curves. The scope of the research and its tasks included the mass transfer solution for a porous media considering the changes in the pore space geometry with time subject to various factors. The analysis of a numerical simulation model showed a significant decrease in the reservoir porosity and permeability in the near wellbore zone of the formation. The study of the diagnostic build-up curves in a log-log scale revealed the fact that the models created in commercially available industry software programs do not give a unique solution for the permeability value in the near-wellbore zone, altered by colmatage but rather provide the average permeability value of the formation. The variability of the inverse dynamic model apart from the known and pre-set property changes was proved to be related to the changeability of the field data (such as pressure, production rates) as well as physical and chemical properties of in-situ and flowing fluids. Thus the correct estimate of the formation permeability and porosity requires definition of the associated parameters relevant for data processing and interpretation for a particular well under study, along with routine well test operations to detect their relative changes which contribute to the increased robustness and reliability of the reservoir characterization studies.
References
1. Shagiev R.G., Levchenko Sh.O., Neftyanoe khozyaystvo – Oil Industry, 2002,
no. 12, pp. 67–69.
2. Nikiforov A.N., Anokhin S.V., Timoshenko I.E., Aktual'nye problemy mekhaniki sploshnoy sredy (Actual problems of continuum mechanics): On the 10th
anniversary of IME KazSC RAS. – Kazan': IMM KazNTs RAN, 2001, pp. 84–99.
3. Nikiforov A.I., Timoshenko I.E., Gazizov A.Sh., Gazizov A.A., Collected papers “Novye idei poiska, razvedki i razrabotki neftyanykh mestorozhdeniy”
(New ideas for prospecting, exploration and development of oil fields), Proceedings
of Scientific-practical conference timed to VII International Exhibition
“Neft', gaz–2000” (Oil, gas’ 2000), Kazan', 5-8 September 2000, Part II,
Kazan': Ekotsentr, 2000, pp. 461–467.
4. Anokhin S.V., Nikiforov A.I., Timoshenko I.E., Proceedings of VIII All-Russian
Congress on Theoretical and Applied Mechanics, Publ. of Ural Branch of RAS,
2001, p. 49.

Key words: permeability, porosity, build-up curve, skin effect, reservoir heterogeneity, near wellbore zone, diffusion, flow through equation.

The paper reviews the results from the research on the effect of formation damage in the near well bore area due to the flow of reservoir fluids with suspended fine particles on the behavior of pressure build-up curves. The scope of the research and its tasks included the mass transfer solution for a porous media considering the changes in the pore space geometry with time subject to various factors. The analysis of a numerical simulation model showed a significant decrease in the reservoir porosity and permeability in the near wellbore zone of the formation. The study of the diagnostic build-up curves in a log-log scale revealed the fact that the models created in commercially available industry software programs do not give a unique solution for the permeability value in the near-wellbore zone, altered by colmatage but rather provide the average permeability value of the formation. The variability of the inverse dynamic model apart from the known and pre-set property changes was proved to be related to the changeability of the field data (such as pressure, production rates) as well as physical and chemical properties of in-situ and flowing fluids. Thus the correct estimate of the formation permeability and porosity requires definition of the associated parameters relevant for data processing and interpretation for a particular well under study, along with routine well test operations to detect their relative changes which contribute to the increased robustness and reliability of the reservoir characterization studies.
References
1. Shagiev R.G., Levchenko Sh.O., Neftyanoe khozyaystvo – Oil Industry, 2002,
no. 12, pp. 67–69.
2. Nikiforov A.N., Anokhin S.V., Timoshenko I.E., Aktual'nye problemy mekhaniki sploshnoy sredy (Actual problems of continuum mechanics): On the 10th
anniversary of IME KazSC RAS. – Kazan': IMM KazNTs RAN, 2001, pp. 84–99.
3. Nikiforov A.I., Timoshenko I.E., Gazizov A.Sh., Gazizov A.A., Collected papers “Novye idei poiska, razvedki i razrabotki neftyanykh mestorozhdeniy”
(New ideas for prospecting, exploration and development of oil fields), Proceedings
of Scientific-practical conference timed to VII International Exhibition
“Neft', gaz–2000” (Oil, gas’ 2000), Kazan', 5-8 September 2000, Part II,
Kazan': Ekotsentr, 2000, pp. 461–467.
4. Anokhin S.V., Nikiforov A.I., Timoshenko I.E., Proceedings of VIII All-Russian
Congress on Theoretical and Applied Mechanics, Publ. of Ural Branch of RAS,
2001, p. 49.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

01.10.2020
24.09.2020
09.09.2020