Percolation experiments to evaluate the effect of downhole pressure on oil relative permeability, and oil viscosity under partial degassing

UDK: 622.276:53
DOI: 10.24887/0028-2448-2023-7-16-20
Key words: set of equipment for evacuating hole, gas extraction from a wellbore annulus, viscosity, density, percolation experiments, permeability, kerosene, water saturation
Authors: A.A. Isaev (Sheshmaoil Management Company LLC, RF, Almetyevsk), R.Sh. Takhautdinov (Sheshmaoil Management Company LLC, RF, Almetyevsk), V.I. Malykhin (Sheshmaoil Management Company LLC, RF, Almetyevsk), A.A. Sharifullin (Sheshmaoil Management Company LLC, RF, Almetyevsk)

The article provides the findings of studying the physical properties of formation fluids at oil fields under high pressure drawdown due to the extraction of separated gas from the wellbore annulus. The porous media were prepared using the centrifugation method because of its greater accuracy and less labor intensity compared to capillary impregnation or semi-permeable membrane methods. Creating a recombined (gas-saturated) sample of reservoir oil and its gradual degassing made it possible to determine the degree of reduction in oil viscosity and density. Every sample of partially degassed oil was examined within the monophase domain in the range of pressures: oil saturation pressure of that stage - reservoir pressure. As the pressure decreases, the density and viscosity of the monophase oil decrease. By comparing the values of density and viscosity at saturation pressures of each partially degassed reservoir oil sample, it has been established that during gas release the density and viscosity of oil increase with each stage, the density increases by 0.7%, the viscosity - by 23%. The dissolution of gas does not produce a significant (multiple) reduction in the density and viscosity of the sample. This is due to the fact that the degassed oil is originally bituminous (the density is above 895 kg/m3) with low gas content and saturation pressure. It has been discovered in the course of the research that at some values of permeability (less than 2·10-3 μm2) the oil relative permeability connate water saturation is equal to the kerosene relative phase permeability under connate water saturation (within a measurement error of 5%). This effect is attributed to the pseudoplastic behavior of oil. The final results of phase permeability measurements for both oil and kerosene, given the measurement error of 5%, have no effect on further calculations. Decreasing the bottomhole pressure at low GOR (up to 40 m3/t) does not affect oil relative permeability; that is why application of the sets of equipment for gas extraction from wellbore annulus (KOGS) causes no damage to the reservoir fluid inflow to a well's bottomhole.

References

1. Isaev A.A., Takhautdinov R.Sh., Malykhin V.I., Sharifullin A.A., Oil production stimulation by creating a vacuum in the annular space of the well, SPE-198401-MS, 2019,

DOI: https://doi.org/10.2118/198401-MS

2. Isaev A.A., Malykhin V.I., Sharifullin A.A., Feasibility evaluation of vacuum presence in a well annulus (In Russ.), Neftepromyslovoe delo, 2020, no. 1, pp. 60–64,

DOI: https://doi.org/10.30713/0207-2351-2020-1(613)-60-64.

3. Isaev A.A., Takhautdinov R.Sh., Malykhin V.I., Sharifullin A.A., Development of the automated system for gas extraction from wells (In Russ.), Neft'. Gaz. Novatsii, 2017, no. 12, pp. 65–72.

4. Isaev A.A., Takhautdinov R.Sh., Malykhin V.I., Sharifullin A.A., Gas removal efficiency from a well (In Russ.), Georesursy = Georesources, 2018, no. 20(4), Part 1,

pp. 359–364, DOI: https://doi.org/10.18599/grs.2018.4.359-364

5. Isaev A.A., Malykhin V.I., Sharifullin A.A., Investigation of the oil physical properties and the main indicators of well operation when creating vacuum in a well annulus (In Russ.), Neftepromyslovoe delo, 2019, no. 5, pp. 46–52, DOI: https://doi.org/10.30713/0207-2351-2019-5(605)-46-52

6. Takhautdinov R.Sh., Isaev A.A., Malykhin V.I., Sharifullin A.A., Developing KOGS-1M set of equipment for pumping associated petroleum gas from the annulus of a well (In Russ.), Burenie i neft', 2021, no. 9, pp. 9–13.

7. Bulatov A.I., Savenok O.V., Yaremiychuk R.S., Nauchnye osnovy i praktika osvoeniya neftyanykh i gazovykh skvazhin (Scientific foundations and practice of oil and gas well development), Krasnodar: Yug Publ., 2016, 576 s.

8. Brekhuntsov A.M., Historical development of West Siberian petroleum province and hydrocarbon resources replacement issues at the present stage (In Russ.), Geologiya i mineral'no-syr'evye resursy Sibiri, 2010, no. 3, pp. 20-25.9. Isaev A.A., Takhautdinov R.Sh., Malykhin V.I., Sharifullin A.A., Measurement of free and dissolved gas in oil in conditions of formation water presence in a well production (In Russ.), Neftepromyslovoe delo, 2018, no. 12, pp. 59–63, DOI: https://doi.org/10.30713/0207-2351-2018-12-59-63.

10. Gudok N.S., Bogdanovich N.N., Martynov V.G., Opredelenie fizicheskikh svoystv neftevodosoderzhashchikh porod (Determination of the physical properties of oil-and-water-containing rocks), Moscow: Nedra Publ., 2007, 592 p.

11. Tiab D., Donaldson E C., Petrophysics: theory and practice of measuring reservoir rock and fluid transport, Elsevier Inc., 2004, 926 p.

12. Cannella W.J., Huh C., Seright R.S., Prediction of xanthan rheology in porous media, SPE-18089-MS, 1988, DOI: https://doi.org/10.2118/18089-MS



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .