Applicability of unmanned aircraft systems as a carrier for conducting low-depth electrical prospecting

UDK: 550.837
DOI: 10.24887/0028-2448-2021-5-67-71
Key words: low-depth electrical exploration, radio-magnetotelluric sounding with a controlled source, non-seismic methods, unmanned aircraft systems, study of the upper part of the section, search for construction materials.
Authors: V.D. Gulin (Gazpromneft NTC LLC, RF, Saint-Petersburg), O.A. Zakharovа (Gazpromneft NTC LLC, RF, Saint-Petersburg), G.S. Grigoriev (Gazprom Neft PJSC, RF, Saint-Petersburg), E.V. Sivaev (Radar mms LLC, RF, Saint-Petersburg), V.G. Ancev (Radar mms LLC, RF, Saint-Petersburg), A.E. Simakov (Radar mms LLC, RF, Saint-Petersburg), A.A. Shlykov (Saint-Petersburg State University, RF, Saint-Petersburg)

The article considers the assessment of the applicability of conducting low-depth electrical exploration by the method of controlled source radio-magnetotelluric sounding using unmanned aircraft systems for geological exploration. The results of the pilot tests, which were passed in several stages at the test site in the Leningrad region, are considered. At the first stage, the possibility of obtaining a useful signal against the background of electromagnetic interference from a helicopter-type unmanned vehicle was evaluated. In general, it was found that when the electromagnetic sensor is removed several meters from the body of the unmanned vehicle, the interference makes a negligible contribution to the measured field taking into account the verification of a priori information. It was analyzed the difference in the level of interference created by the helicopter engine on the recorder – magnetic field sensors system when the recorder is located directly under the helicopter and away from it. The analysis of the obtained ratios of noise and signal levels showed that electromagnetic interference from an unmanned vehicle is not significant and can be installed under the body. The final stage of the pilot tests was to conduct a survey using an unmanned vessel. The results of the inversion are compared with the work of the ground complex and well information. According to the geoelectric section, the main lithological units are restored, and the detail of the survey is comparable to ground work. According to the analysis of the materials, it is shown that the results of low-depth electrical exploration studies by modifying the method of radio-magnetic and thermal sounding with a controlled source using unmanned aircraft systems confirmed the possibility of obtaining conditioned materials using the technology of low-depth electrical exploration.

References

1. Gordeev S.G., Sedel'nikov E.S., Tarkhov A.G., Elektrorazvedka metodom radiokip (Electrical prospecting by radio kip method), Moscow: Nedra Publ., 1981, 132 p.

2. Saraev A., Simakov A., Shlykov A., Tezkan B., Controlled source radiomagnetotellurics: a tool for near surface investigations in remote rejoins, J.Appl. Geophys., V. 146, pp. 228–237.

3. Shlykov A.A., Saraev A.K., Estimating the macroanisotropy of a horizontally layered section from controlled-source radiomagnetotelluric soundings (In Russ.), Fizika Zemli = Izvestiya. Physics of the Solid Earth, 2015, no. 4, pp. 128–147.

The article considers the assessment of the applicability of conducting low-depth electrical exploration by the method of controlled source radio-magnetotelluric sounding using unmanned aircraft systems for geological exploration. The results of the pilot tests, which were passed in several stages at the test site in the Leningrad region, are considered. At the first stage, the possibility of obtaining a useful signal against the background of electromagnetic interference from a helicopter-type unmanned vehicle was evaluated. In general, it was found that when the electromagnetic sensor is removed several meters from the body of the unmanned vehicle, the interference makes a negligible contribution to the measured field taking into account the verification of a priori information. It was analyzed the difference in the level of interference created by the helicopter engine on the recorder – magnetic field sensors system when the recorder is located directly under the helicopter and away from it. The analysis of the obtained ratios of noise and signal levels showed that electromagnetic interference from an unmanned vehicle is not significant and can be installed under the body. The final stage of the pilot tests was to conduct a survey using an unmanned vessel. The results of the inversion are compared with the work of the ground complex and well information. According to the geoelectric section, the main lithological units are restored, and the detail of the survey is comparable to ground work. According to the analysis of the materials, it is shown that the results of low-depth electrical exploration studies by modifying the method of radio-magnetic and thermal sounding with a controlled source using unmanned aircraft systems confirmed the possibility of obtaining conditioned materials using the technology of low-depth electrical exploration.

References

1. Gordeev S.G., Sedel'nikov E.S., Tarkhov A.G., Elektrorazvedka metodom radiokip (Electrical prospecting by radio kip method), Moscow: Nedra Publ., 1981, 132 p.

2. Saraev A., Simakov A., Shlykov A., Tezkan B., Controlled source radiomagnetotellurics: a tool for near surface investigations in remote rejoins, J.Appl. Geophys., V. 146, pp. 228–237.

3. Shlykov A.A., Saraev A.K., Estimating the macroanisotropy of a horizontally layered section from controlled-source radiomagnetotelluric soundings (In Russ.), Fizika Zemli = Izvestiya. Physics of the Solid Earth, 2015, no. 4, pp. 128–147.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

11.10.2021
07.10.2021
29.09.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина