Biomarkers in oils (seeps) as indicators of the conditions for the derivation of oil-bearing deposits (Halabja block, eastern region of Iraqi Kurdistan)

UDK: 553.98
DOI: 10.24887/0028-2448-2021-5-54-58
Key words: geochemistry, geology, organic matter, biomarkers, oil-oil correlation, seep, Halabja, Iraqi Kurdistan, depositional environment, maturity of the oil
Authors: N.N. Kosenkova (Gubkin University, RF, Moscow), A. Hama Amin Rebaz (Gubkin University, RF, Moscow), S.F. Khafizov (Gubkin University, RF, Moscow)

Gas chromatography and gas chromatography / mass spectrometry methods are used to analyze crude oils obtained from southern and northern blocks of Halabja field in eastern part of Iraqi Kurdistan, using different biomarkers coefficients. Biomarkers characterization is used to provide information on the source of the organic matter, depositional environment, degree of maturity, age determination of the crude oils. The data which was used is including normal alkanes and acyclic isoprenoids distributions, terpans, hopanes, steranes and diasternes aliphatic biomarkers, the distribution of aromatic biomarkers naphthalenes, dibenzothiophene, phenanthrene. The oil samples from the southern and northern blocks of Halabja are characterized by a low Pr/Ph ratio (< 1.0), a relatively low and absent oleanane and lupan ratios, an abundance of moderate C29 regular steranes and diasteranes, a relatively low C27 sterane, the presence of tricyclic terpenes, relatively low dibenzothiophene / phenanthrene ratios etc. All biomarker parameters indicates that the source rocks of the oils from southern and northern blocks of Halabja are represented by clay-carbonate and clay sediments with II-III types of organic matter were deposited under anoxic ─ reducing marine environments and were generated at high stage of maturity. All of the age diagnosed biomarker parameters indicate a Cretaceous source of oils from the south part of Halabja and a Jurassic source in oil from the northern part.

References

1. Khama Amin R.A., Hydrocarbon potential of southeast Iraqi Kurdistan: Geochemical characteristics of the Upper Cretaceous Shiranish formation point to its high potential (In Russ.), Oil&Gas Journal Russia, 2017, no. 8 (118), pp. 50–55.

2. Al-Ameri T.K., Zumberge J., Markarian Z.M., Hydrocarbons in the Middle Miocene Jeribe Formation, Diyala Region, NE Iraq, Journal of Petroleum Geology, 2012, V. 34(2), pp. 199–216.

3. Hama Amin R.A., Khafizov S.F., Kosenkova N.I., Trunova M.I., Characterization and oil-oil correlation for the Mil Qasim and Sarqala oilfields based on biomarkers analysis, Kurdistan, Northern Iraq, Proceedings of Gubkin Russian State University of Oil and Gas, 2020, no. 4, pp. 7–25.

4. Mohialdeen I.M.J., Hakimi M.H., Al-Beyati F.M., Geochemical and petrographic characterization of Late Jurassic-Early Cretaceous Chia Gara Formation in Northern Iraq: palaeoenvironment and oilgeneration potential, Mar. Pet. Geol., 2013, V. 43, pp. 166–177.

5. Peters K.E., The Biomarker guide, V. 1. Biomarkers and isotopes in petroleum systems and human history, United Kingdom at the Cambridge University Press, 2005, V. 1, 471 p.

6. Peters K.E., Walters C.C., Moldowan J.M., The Biomarker guide, V. 2. Biomarkers and isotopes in petroleum systems and Earth history, United Kingdom at the Cambridge University Press, 2005, V. 2, 684 r.

7. Dunnington H.V., Generation, migration, accumulation, and dissipation of oil in Northern Iraq, American Association of Petroleum Geologists. Reprinted by GeoArabia, 2005, V. 10, no. 2, pp. 39–84.

8. Jassim S.Z., Buday T., Middle Palaeocene –Eocene Megasequence AP10, Geology of Iraq, Published by Dolin, 2006, p. 341

9. Kent W., Hickman R.G., Norman structural development of Jebel Abd Al Aziz, Northeast Syria, GeoArabia, 1997, no. 2(3), pp. 307–330.

10. Shanmugam G., Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia, AAPG Bulletin, 1985, V. 68(8), pp. 1241–1254.

11. Waples D.W., Machihara T.,  Biomarkers for geologists: A practical guide to the application of steranes and triterpanes in petroleum geology, AAPG Methods in Exploration, 1991, no. 9, 91 p., DOI: https://doi.org/10.1017/S0016756800008529

12. Grantham P.J., Wakefield L.L., Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time, Organic Geochemistry, 1988, V. 12, pp. 61–73.

Gas chromatography and gas chromatography / mass spectrometry methods are used to analyze crude oils obtained from southern and northern blocks of Halabja field in eastern part of Iraqi Kurdistan, using different biomarkers coefficients. Biomarkers characterization is used to provide information on the source of the organic matter, depositional environment, degree of maturity, age determination of the crude oils. The data which was used is including normal alkanes and acyclic isoprenoids distributions, terpans, hopanes, steranes and diasternes aliphatic biomarkers, the distribution of aromatic biomarkers naphthalenes, dibenzothiophene, phenanthrene. The oil samples from the southern and northern blocks of Halabja are characterized by a low Pr/Ph ratio (< 1.0), a relatively low and absent oleanane and lupan ratios, an abundance of moderate C29 regular steranes and diasteranes, a relatively low C27 sterane, the presence of tricyclic terpenes, relatively low dibenzothiophene / phenanthrene ratios etc. All biomarker parameters indicates that the source rocks of the oils from southern and northern blocks of Halabja are represented by clay-carbonate and clay sediments with II-III types of organic matter were deposited under anoxic ─ reducing marine environments and were generated at high stage of maturity. All of the age diagnosed biomarker parameters indicate a Cretaceous source of oils from the south part of Halabja and a Jurassic source in oil from the northern part.

References

1. Khama Amin R.A., Hydrocarbon potential of southeast Iraqi Kurdistan: Geochemical characteristics of the Upper Cretaceous Shiranish formation point to its high potential (In Russ.), Oil&Gas Journal Russia, 2017, no. 8 (118), pp. 50–55.

2. Al-Ameri T.K., Zumberge J., Markarian Z.M., Hydrocarbons in the Middle Miocene Jeribe Formation, Diyala Region, NE Iraq, Journal of Petroleum Geology, 2012, V. 34(2), pp. 199–216.

3. Hama Amin R.A., Khafizov S.F., Kosenkova N.I., Trunova M.I., Characterization and oil-oil correlation for the Mil Qasim and Sarqala oilfields based on biomarkers analysis, Kurdistan, Northern Iraq, Proceedings of Gubkin Russian State University of Oil and Gas, 2020, no. 4, pp. 7–25.

4. Mohialdeen I.M.J., Hakimi M.H., Al-Beyati F.M., Geochemical and petrographic characterization of Late Jurassic-Early Cretaceous Chia Gara Formation in Northern Iraq: palaeoenvironment and oilgeneration potential, Mar. Pet. Geol., 2013, V. 43, pp. 166–177.

5. Peters K.E., The Biomarker guide, V. 1. Biomarkers and isotopes in petroleum systems and human history, United Kingdom at the Cambridge University Press, 2005, V. 1, 471 p.

6. Peters K.E., Walters C.C., Moldowan J.M., The Biomarker guide, V. 2. Biomarkers and isotopes in petroleum systems and Earth history, United Kingdom at the Cambridge University Press, 2005, V. 2, 684 r.

7. Dunnington H.V., Generation, migration, accumulation, and dissipation of oil in Northern Iraq, American Association of Petroleum Geologists. Reprinted by GeoArabia, 2005, V. 10, no. 2, pp. 39–84.

8. Jassim S.Z., Buday T., Middle Palaeocene –Eocene Megasequence AP10, Geology of Iraq, Published by Dolin, 2006, p. 341

9. Kent W., Hickman R.G., Norman structural development of Jebel Abd Al Aziz, Northeast Syria, GeoArabia, 1997, no. 2(3), pp. 307–330.

10. Shanmugam G., Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia, AAPG Bulletin, 1985, V. 68(8), pp. 1241–1254.

11. Waples D.W., Machihara T.,  Biomarkers for geologists: A practical guide to the application of steranes and triterpanes in petroleum geology, AAPG Methods in Exploration, 1991, no. 9, 91 p., DOI: https://doi.org/10.1017/S0016756800008529

12. Grantham P.J., Wakefield L.L., Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time, Organic Geochemistry, 1988, V. 12, pp. 61–73.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

22.09.2021
21.09.2021
13.09.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина