Численное моделирование сейсмичности, инициированной закачкой жидкости.

С.Б. Турунтаев В.Ю. Рига Н.А. Барышников

Содержание

- Примеры сейсмичности при воздействии на флюидные системы
- Физика сейсмичности, индуцированной закачкой флюидов
- Активация естественных разломов и трещин при изменении пластового давления. Закон трения rate-andstate
- Примеры расчетов подвижек по разломам
- Возможности использования методов машинного обучения для решения задачи о развитии сейсмичности при закачке жидкости
- Заключение

Денверские землетрясения

Усиление сейсмической активности при разработке сланцевых месторождений нефти, США

2447 M>=3 Earthquakes 2009 - 3/22/2016

2009-2015 361 М≥3 /год

William L. Ellsworth et al. Stanford Centre for Induced and Triggered Seismicity

Рост сейсмичности в результате разработки сланцевых месторождений

Наиболее ярким примером сейсмических проявлений, спровоцированных закачкой, стало землетрясение с магнитудой M_w 5.8, произошедшее в начале сентября 2016 г. в штате Оклахома (США) и вызвавшее многочисленные повреждения зданий (Grandin et al., 2017). Исследование показало (Zhai et al., 2019), что рост сейсмичности в штате Оклахома связан с накопленным объемом закачанной жидкости. Сейсмическая активность в центральной Оклахоме проявилась почти через 15 лет после начала закачки. В западной части Оклахомы такая активизация началась после резкого увеличения темпов закачки. 4

Добыча газа и сейсмичность месторождения Гронинген, Нидерланды

В Нидерландах утром 1 октября 2023г прекратили добычу на Гронингенском газовом месторождении, которое является крупнейшим в Евросоюзе (De Telegraaf)

Месторождение было открыто в 1959 году на севере Нидерландов. С тех пор было добыто свыше 1,5 трлн куб. м, а остаточные запасы оцениваются в 2,7 трлн куб. м. С начала 1990-х район месторождения пережил более 900 землетрясений магнитудой до 3,6.

Базельский геотермальный проект

Землетрясение M=5.4 Pohang, Южная Корея, 15 Лочетре 2017 Pohang Earthquake

Kwang-Hee Kim^{1*}, Jin-Han Ree^{2*}, YoungHee Kim³,

135 потерпевших297 млн. долларов ущерб4.5 км глубина гипоцентра

Физика сейсмичности при изменении порового давления

- Основным параметром, ответственным за появление сейсмических событий при закачке жидкости, является поровое давление.
- Достижение поровым давлением жидкости некоторой критической величины, значение которой зависит от величин главных сжимающих напряжений и ориентации естественной трещиноватости, принимается за условие инициирования сейсмогенерирующей подвижки.
- Математически данное условие записывается в виде совместности критерия Кулона и соотношения Мора для эффективных напряжений на площадке, произвольно ориентированной по отношению к осям главных напряжений:

$$\tau = \tau_3 + \mu \cdot (\sigma_n - p) = \tau_3 + \operatorname{tg} \varphi \cdot (\sigma_n - p)$$
$$\sigma_n = \frac{1}{2}(\sigma_3 + \sigma_3) - \frac{1}{2}(\sigma_3 - \sigma_3)\operatorname{cos} 2\theta$$
$$\tau = \frac{1}{2}(\sigma_3 - \sigma_3)\operatorname{sin} 2\theta$$

 где *τ* - касательное напряжение, *τ*₀ - сцепление (прочность на сдвиг), *σ_n* – нормальная по отношению к рассматриваемой площадке компонента напряжений, *σ*₁, *σ*₃ - максимальное и минимальное главные напряжения, *p* – поровое давление жидкости, *θ* - угол между направлением действия максимального главного напряжения и нормалью к площадке, *μ* - коэффициент внутреннего трения.

265

8

Закон трения rate-and-state

Параметр a отвечает за упрочнение с возрастанием скорости, b – за разупрочнение

*k*_{cr} – критическое значение жесткости, определяемое параметрами закона трения

Sergey B Turuntaev, Vasily Y Riga. Non-linear effects of pore pressure increase on seismic event generation in a multidegree-of-freedom rate-and-state model of tectonic fault sliding. // Nonlin. Processes Geophys., 24, 215–225, 2017 doi:10.5194/npg-24-215-2017

Условие возникновения нестабильного скольжения
$$\begin{cases} \frac{d\tau_{ss}(v_0)}{dv_0} < 0 \Rightarrow b > a \\ k < k_{cr} \end{cases}$$

Модель сейсмичности при изменении порового давления

(Brace, Byerlee, 1966; Burridge & Knopov, 1967; Talwani and Acree, 1985, Shapiro et al., 2006, Dinske et al., 2012, McClure, 2012, Willis-Richards et al., 1996; Rahman et al., 2002; Ghassemi and Tarasovs, 2006; Kohl and Mégel, 2007; Bruel, 2007; Baisch et al., 2010; Rachez and Gentier, 2010; Deng et al., 2011; Будков А.М., Кочарян Г.Г., Новиков В.А., Крашениников А.В., 2015)

Выбор вида закона трения

G.G. Kocharyan, V.K. Markov, A.A. Ostapchuk et al. // Phys Mesomech – 2014 – 17(2) – pp. 123-133.

Конкретный вид эволюции параметра ϑ закона rate-andstate не является определяющим; 2-х параметрический закон трения позволяет более точно описывать форму скачка по сравнению с однопараметрическим законом, позволяя при этом воспроизводить характерную повторяемость событий

Sergey B Turuntaev, Vasily Y Riga. Non-linear effects of pore pressure increase on seismic event generation in a multidegree-of-freedom rate-and-state model of tectonic fault sliding. // Nonlin. Processes Geophys., 24, 215–225, 2017 doi:10.5194/npg-24-215-2017

Характерный профиль скорости при скольжении блока

Переход от асейсмического скольжения к сейсмическому.

Рассматривается единичный разлом в бесконечной однородной упругой слабопроницаемой среде (0.01 мД), вблизи которого производится закачка воды (с постоянным расходом равным 23 л/час). Закачка проводилась до момента, пока общий объем закачанной жидкости не достигал значения 60 м³, зачем закачка останавливалась. Размер расчетной области 6 км на 10 км. Разлом высокопроницаем, его проницаемость растет по мере увеличения порового давления. Нормальное напряжение на разломе было равно 64 МПа.

В серии расчетов постепенно увеличивался параметр $\varepsilon = \frac{b_1 + b_2 - a}{a}$, отвечающий за степень разупрочнения разлома, при прочих фиксированных параметрах.

Зависимость максимальной достигаемой скорости скольжения от величины ε . Результаты расчета для модельного разлома с разной заданной длиной

a = 0.015; b1 = 0.002788; b2 = 0.016728; b1+b2-a = 0.0045158

t, дни

3.2e-08 1e-08

3.2e-09

1e-09 3.2e-10

Переход от асейсмического скольжения к сейсмическому.

Пример динамики скольжения разлома во времени. В силу симметрии представлена половина разлома. Левый график – изменение распределения скорости скольжения вдоль разлома во времени. Правый график - изменение распределения скорости скольжения вдоль разлома во времени в увеличенном масштабе.

При увеличении ε зона, где развивается самое быстрое скольжение, становится все уже во временных координатах, точка расположения максимального скольжения на разломе смещается от центра, пока в какой-то момент не происходит качественный скачок, и подвижка не

становится сейсмической

Развитие сейсмического режима скольжения тектонического разлома при закачке жидкости

Сейсмическое движение по разлому при закачке жидкости: ось х — время от начала закачки в днях; ось у — положение точки разлома, в которой в данный момент времени достигается максимальная скорость скольжения; цветом показано значение максимальной скорости скольжения в данном месте в данное время Зависимость максимальной скорости скольжения от скорости изменения давления и длины зоны, на которой нарушается критерий Кулона. Каждая точка соответствует одному расчету. Цвет соответствует задаваемой длине разлома, на которой нарушается критерий Кулона только за счет роста давления.

В.Ю. Рига, С.Б. Турунтаев. Численное исследование явления возникновения сейсмической подвижки на разломе в результате закачки флюида. // Физика Земли, 2024, №5, с.3-18. ¹⁴

Влияние неоднородностей разлома на развитие сейсмической подвижки

На разломе присутствуют две зоны упрочнения: -20 ≤ x ≤-15 и 20 ≤ x ≤25:

Рассмотрен случай, когда разлом включает в себя зоны упрочнения ($b_1 + b_2 - a < 0$). Показано, что даже небольшая зона упрочнения останавливает распространение возмущения, это может приводить к последовательности из нескольких сейсмических подвижек вне этих зон.

Скорости подвижек в разном масштабе времени

Смещения по разлому в разном масштабе времени

Применение упрощенной модели для случая Базеля

Изменение давления в результате закачки жидкости $p = \frac{Q_0 \mu}{4\pi kh} Ei(\frac{r^2}{4Dt}) + p_0$ (фильтрация радиальная):

Значения параметров взяты близкими к параметрам, характеризовавшим систему скважина-резервуар проекта Базель (Häring et al., 2008, Dinske, 2010): r = 100 м, $Q_0 = 1.5$ м³/мин, $p_0 = 44$ МПа, $\mu = 0.284$ Па·с, h = 46 м, k = 4 мД

Применение модели для случая Базеля

Турунтаев С.Б., Рига В.Ю. // Триггерные эффекты в геосистемах (ред. Адушкин, Кочарян), 2017, 29-39.

Возможные сценарии развития сейсмичности при закачке

Турунтаев С.Б., Рига В.Ю. // Триггерные эффекты в геосистемах (ред. Адушкин, Кочарян), 2017, 29-39.

Использование машинного обучения для прогноза распространения сейсмичности при закачке жидкости

Методика прямого моделирования распространения порового давления и микросейсмических событий при закачке жидкости

- Каждый элементарный объём содержит N >> 1 инициаторов событий (трещин), параметры которых распределены в согласно законам распределения.
- Количество событий на каждом шаге по времени определяется приращением количества инициаторов, для которых выполнился критерий Кулона Мора.

Создание базы данных модельных неоднородных сред

База данных синтетических геологических моделей:

- Была использована база данных синтетических геологических моделей со случайной структурой и набором типов пород (36 типов пород, включающих в себя осадочные, метаморфические и вулканические породы) (Jessell, M. Et al., 2022)
- Модели получены авторами оригинальной работы в ходе численного моделирования случайного геологического процесса (поэтапное деформирование начальной слоистой структуры, сдвиги, неоднородные включения, выветривание и формирование осадочных пород)

UNC->DYKE->TILT->FOLD->FAULT

FOLD->DYKE->UNC->TILT->FAULT TILT->FAULT->DYKE->FOLD->UNC

Mean Mean Lithology Genetic Std Std Lithology density permeability class permeabili class density (g cm-3 (Log10(mD) 2.61 0.091 Felsic_Dyke_Sill Dyke Intrusive 1.56 0.58 2.79 0.016 Mafic_Dyke_Sill Dyke Intrusive 1.56 0.58 0.095 Granite Plug Intrusive 2.69 1.56 0.58 0.155 1.56 0.58 Peridotite Plug Intrusive 2.85 Porphyry Plug Intrusive 2.84 0.129 1.56 0.58 3.19 0.253 1.56 0.58 yxenite_Hbndite Plug Intrusive Gabbro 3.00 0.160 1.56 0.58 Plug Intrusive Plug Intrusive 2.85 0.135 1.56 0.58 Diorite 1.56 2.69 0.115 0.58 Syenite Plug Intrusive Amphibolite Met_strat Metamorphic 2.88 0.142 2.00 0.57 Gneiss Met strat Metamorphie 2.70 0.074 2.00 0.57 2.87 0.533 2.00 0.57 Marble Metamorphic Met strat Meta Carbonate Met strat Metamorphic 2.74 0.037 2.00 0.57 2.78 0.302 2.00 0.57 Meta Felsio Met_strat Metamorphic Met_strat Metamorphic 2.90 0.265 2.00 0.57 Aeta Intermediat Meta Mafic Met_strat Metamorphic 2.82 0.096 2.00 0.57 2.98 0.494 2.00 0.57 Meta Sedimen Met strat Metamorphic Meta Ultramafic Met strat Metamorphic 2.84 0.138 2.00 0.57 2.82 0.110 2.00 Schist 0.57 Met_strat Metamorphic 2.77 Andesite Met strat Volcanic 2.72 0.092 0.46 Basalt Met_strat Volcanic 2.79 0.155 2.77 0.46 Met_strat Volcanic 2.62 0.129 2.77 0.46 Dacite 2.91 0.102 2.77 0.46 Ign_V_Breccia Met_strat Volcanic 2.63 0.071 2.77 0.46 Rhvolite Met_strat Volcanic Met_strat Volcanic 2.65 0.110 2.77 0.46 Tuff_Lapillistone Met strat 2.77 0.168 2.77 V Breccia Volcanic 0.46 2.77 V Conglomerate Met strat Volcanic 2.76 0.104 0.46 V Sandstone Met_strat Volcanic 2.78 0.101 2.77 0.46 V Siltstone Met strat Volcanic 2.86 0.103 2.77 0.46 Strat 2.62 0.116 3.08 0.23 Conglomerate Sedimentar

Jessell, M., Guo, J., Li, Y., Lindsay, M., Scalzo, R., Giraud, J., Pirot, G., Cripps, E., and Ogarko, V.: Into the Noddyverse: a massive data store of 3D geological models for machine learning and inversion applications, Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022, 2022.

Создание базы данных синтетических каталогов событий

4 KM

Scibek J. Multidisciplinary database of permeability of fault zones and surrounding protolith rocks at world-wide sites // Sci Data. 2020. T. 7. № 1. C. 95. Магнитуда события выбиралась случайным образом исходя из линейного закона повторяемости (M min = 0, b = 1):

Результат - база данных синтетических каталогов событий для 130 тысяч моделей коллекторов

Модель глубокого обучения для восстановления фильтрационных свойств среды

Входные данные –

каталог событий:

- Время
- Координаты (Х,Ү,Z)
- Магнитуда события

Функция потерь:

$$l = \frac{1}{21^3} \sum_{x,y,d} f_{x,y,d} \cdot \left(\log(k_{x,y,d}) - \log(\hat{k}_{x,y,d}) \right)^2$$

f_{x,y,d} – матрица коэффициентов штрафа:

Выходные данные:

3D модель проницаемости среды

Пример результата восстановления проницаемости неоднородной модели коллектора

Исходная модель проницаемости коллектора

Восстановленная модель проницаемости коллектора

Восстановление проницаемости однородной модели коллектора и модели с дополнительным слоем с различной проницаемостью:

Ошибка восстановления в зависимости от величины проницаемости однородной модели коллектора и модели с дополнительным слоем :

Пространственное распределение стандартного отклонения log₁₀(k) (усредненное по всей тестовой выборке):

Зависимость стандартного отклонения log₁₀(k) от среднего количества событий в ячейке среды:

Взаимодействие трещины гидроразрыва с естественной трещиной

Зависимость давления в скважине, давлений жидкости и величин раскрытия трещины ГРП на различных ее участках от времени

Изменение раскрытия заранее созданной трещины в зависимости от времени и расстояния от места пересечения с трещиной ГРП

- Показано, что обе трещины образуют единую гидравлическую систему, практически одновременно реагирующую на закачку жидкости в нагнетательную скважину.
- Величина раскрытия заранее созданной трещины уменьшается с расстоянием от места её пересечения с трещиной гидроразрыва.

Заключение

- Воздействие на флюидные системы недр приводит к сейсмическим событиям
- Реализация сейсмического или асейсмического типа движения определяется параметрами закачки и условиями на разломе.
 Переход к сейсмогенерирующему режиму происходит скачкообразно, дальнейшее увеличение скорости закачки не приводит к росту скорости сейсмогенерирующей подвижки, достигающей значений 0,1-1 м/сек в зависимости от тектонических напряжений.
- Предложена методика восстановления пространственного распределения фильтрационных свойств неоднородного коллектора по данным о распространении облака микросейсмических событий, вызванного закачкой жидкости.
- Разработанная методика применена к задаче об эволюции микросейсмичности, вызванной закачкой жидкости с постоянным расходом в модельный неоднородный коллектор. Полученная модель позволяет восстанавливать крупномасштабные неоднородности среды внутри области с радиусом порядка 250 метров вокруг нагнетательной скважины
- Интерпретация данных мониторинга должна опираться на геомеханические модели движений пористой флюидонасыщенной трещиноватой среды, содержащей разломы. Сценарии развития индуцированной сейсмичности сильно зависят от параметров модели. Для настройки модели необходимы предварительные исследования.

СПАСИБО ЗА ВНИМАНИЕ!

idg.ras.ru

?кти?а?ия естест?енн? х ра?ломо? и тре? ин ?ри и?менении ?ласто?ого да?ления

 $\tau * = C + \mu(\sigma - p)$

