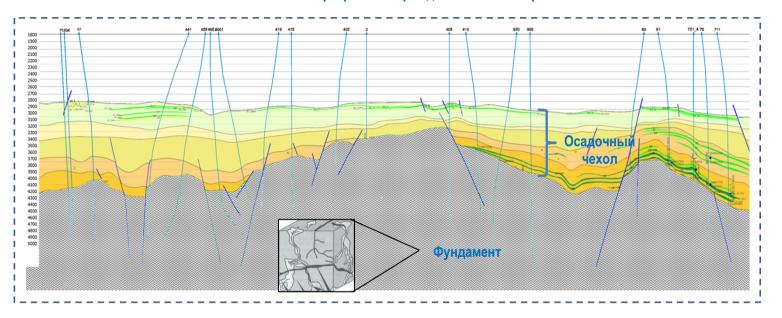
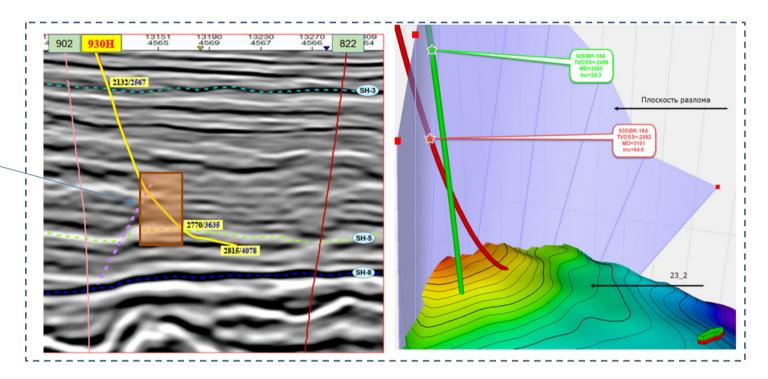
СП «Вьетсовпетро»


Комплексное решение проблемы применимости горизонтальных скважин в условиях месторождений шельфа Вьетнама

Авторы: Агишев Э.Р., Лубнин А.А.

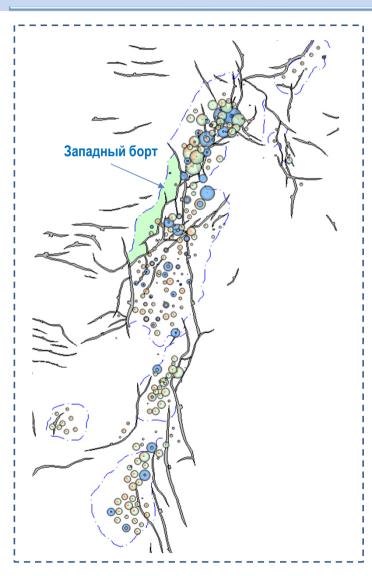
Геологические особенности месторождения

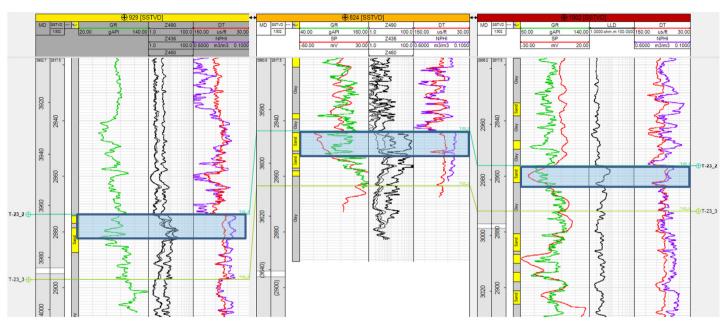
Геологический разрез месторождения Белый Тигр


- Продуктивная толща представлена терригенными отложениями четвертичной, неогеновой и палеогеновой систем, залегающими на кристаллическом фундаменте мезозойского возраста;
- Выделено 4 продуктивных объекта- фундамент, нижний и верхний олигоцен, нижний миоцен;
- Площадь разбита на блоки многочисленными дизъюнктивными нарушениями, чье количество и амплитуда сокращается снизу вверх;
- Терригенные объекты многопластовые, зоны нефтеносности, как правило совпадают;
- 3 стадия разработки вовлечение менее благоприятных участков с ухудшенными ФЕС;
- Необходим поиск новых технологий добычи;

Группа	Система	Отдел	Подотдел	Свита	Мошность	0.0 <u>FK (gAPI)</u> 0.0 <u>FK (ohm.m)</u> 15. 0.2 250.	Сейсмический горизонт	Литологи- ческая колонка	Продуктивный горизонт
КАЙНОЗОЙСКАЯ	HEOLEHOBAЯ - N	миоцен N,	нижний миоцен N,'	BATbXO	м 000-022	Commission party The Print	CT-5		22 • 23 • 24 • 25 • 26 • 27 • 28 •
	ПАЛЕОГЕНОВАЯ - P	ОЛИГОЦЕН - Р,	ВЕРХНИЙ ОЛИГОЦЕН - Р,	ЧАТАН	50-1800 м	The same of the sa	CT-8B		I • III • IV • V •
			нижний олигоцен - Р,	HAKY	0-412 M		CT-AΦ		VI
МЕЗОЗОЙСКАЯ	триас, юра, мел				5-1743 м			¥ * * * * * * * * * * * * * * * * * * *	•

Первый опыт бурения ГС

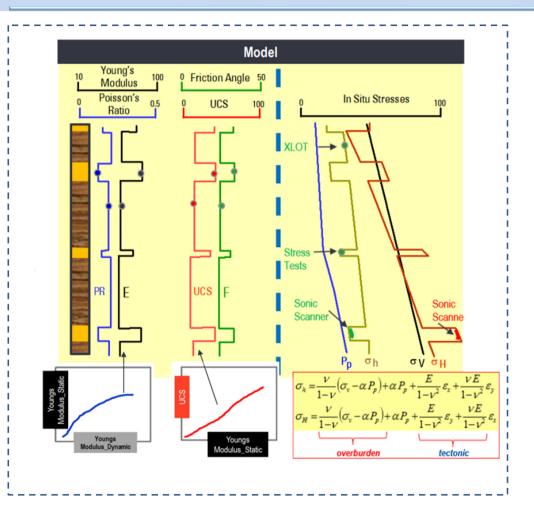

Зона осложнений



- Впервые в СП «Вьетсовпетро» опробована технология геостиринга;
- Точка Т1 достигнута с расхождением меньше 1 м;
- Осложнения при бурении в зоне разлома вплоть до потери подвижности инструмента;
- В интервале 3234-3264 посадки и затяжки при прохождении инструмента
- Устранены промывкой, вращением, прокачкой тампонов, расхаживанием, проработкой;
- Осложнения при спуске ОК;
- Принято решение о ликвидации аварийного ствола;

Отложения нижнего миоцена

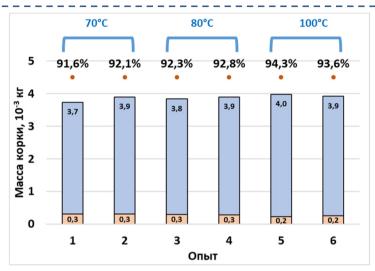
Западный борт

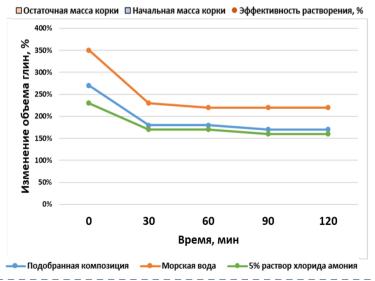

- Преобладает только один горизонт 23-2;
- Подтвержденная нефтеносность;
- 5 эксплуатационных и 4 разведочные скважины;
- Выработка менее 5%;
- Наличие слотов для бурения новых скважин;

Вызовы

- Устойчивость стенок скважин при бурении с большим зенитным углом в зоне тектонических нарушений;
- Засорение ПЗП при вскрытии на утяжеленном буровом растворе;
- Вынос мех. примесей;
- Неопределнность в залегании целевого интервала;

Геомеханическое моделирование





- Более 50 экспериментов на образцах керна:
 - предел прочности при одноосном сжатии;
 - методом одностадийного трехосного сжатия с регистрацией скорости продольной и поперечной волны;
 - Определение гранулометрического и минералогического состава;
- Использование микроимиджеров, акустического и плотностного каротажа;
- Расчеты статистических упруго-прочностных свойств;
- Калибровка на данные керна, разрушения ствола скважины, буровые события, теста на «утечку»;
- Ретроспективный анализ по исключенной из построения скважины;
- Выработаны рекомендации по вскрытию среднего миоцена на буровом растворе с плотностью 1.20 г/см³, нижнего миоцена- 1.32 г/см³;

Подбор брейкерной композици

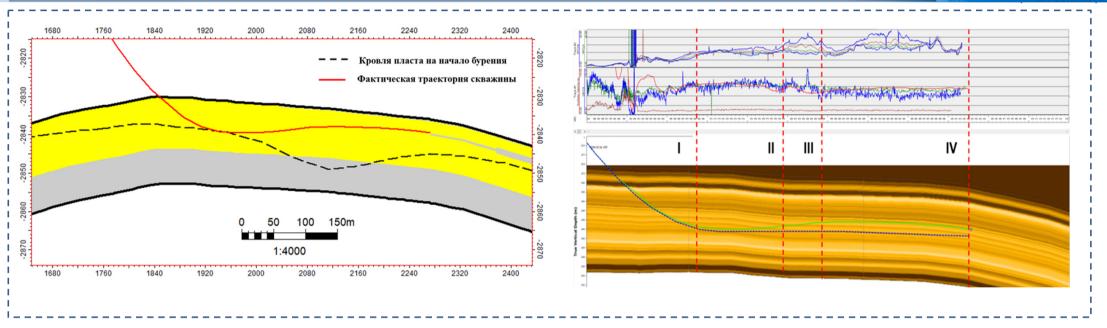
Растворение глинистой корки

- Ограничение на применение буровых растворов на нефтяной и полимерной основе;
- Использование БР «FloPro» на основе морской воды для первичного вскрытия продуктивного пласта;
- Основной вклад в образование фильтрационной корки связан с элементами твердой фазы, вводимыми для предотвращения поглощений и повышения термической стабильности- CaCO3 и MgO;
- Высокое содержание глинистого материала (10-13%)- риск разбухания глин;
- Подбор композиции для ОПЗ на основе хелатных соединений;
- Исследования:
 - растворимости твердой фазы БР и шлама;
 - разбухания глин;
 - взаимодействия с жидкостью глушения, пластовыми флюидами;
- Результаты:
 - Удаление более 90% массы корки при выдержки в течение 4 часов;
 - Восстановление до 70% проницаемости образца;
 - Слабое взаимодействие с глинистым материалом;

Подбор заканчивания

Насыпная модель

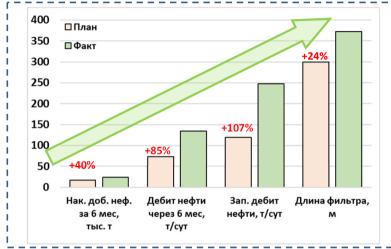
Фильтр после опыта



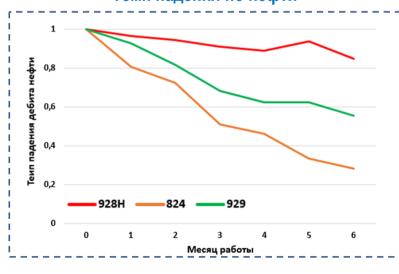
- Вынос слабосцементированной породы риск эрозии оборудования и снижения продуктивности;
- Необходим подбор апертуры фильтра-хвостовика;
- Проведение исследования на удерживающую способность фильтра с апертурой 2 микрона;
- Sand Retention Test:
 - определение скорости фильтрации;
 - перепада давления;

- Стандартная методика
- измерение КВЧ и гранулометрического состава;
- Результаты:
 - Отсутствие частиц размером выше апертуры;
 - Потеря менее 30% проницаемости фильтра;
 - КВЧ 0.9 г/л;
- Фильтр удовлетворяет критериям КВЧ<4.1 г/л, потеря менее 50% проницаемости фильтра [SPE 73772];

Геостиринг



- Транспортная секция: ГК, НК, резистивиметрия;
- Горизонт: 2 x ГК, НК, АК, резистивиметрия, плотностной каротаж, картограф границ;
- Успешное прохождение зоны разломов и спуск ОК;
- Неподтверждение структуры на 8 м относительно плана и на 6 м относительно сопровождения;
- Обновление стратегии проводки горизонтального участка;
- По всей длине ГУ по шламу 100% песчанник, свечение, газопоказания 8-17%;
- По данным ГИС эффективность проводки по коллектору 100%;
- Проводка по целевому, высокоомному интервалу 47%, по коллектору с пониженными ФЕС- 26%, по глинизированной зоне- 16%; не интерпретировано из-за непромера -11%;
- Проведение ОПЗ в два этапа;


Результаты

Сравнение показателей за 6 месяцев

Темп падения по нефти

Достигнутые результаты

- Эффективность проводки по коллектору 100%;
- Длина фильтр-хвостовик составила 372 м (+24% к проекту);
- Запускной дебит нефти составил 248 т/сут, что в 2 раза превышает прогнозные показатели и в 4 раза соседние ННС;
- Превышение накопленной добычи нефти за первые 6 месяцев на 40%, РІ в 2.5 раза;
- Ha BHP КВЧ 0.21-0.46 г/л, через полгода менее 0.1 г/л;
- Темп падения значительно ниже соседних ННС;

Примененные технологии

- Геомеханическое моделирование для обеспечения устойчивости стенок транспортного ствола;
- Подбор нецементируемого фильтра хвостовика, для борьбы с выносом песка;
- ОПЗ на основе брейкерных композиций для разрушения фильтрационных корок;
- Бурение с телеметрией LWD/MWD для привязки текущего положения;
- Геостиринг 24*7 в режиме реального времени для обеспечения эффективной проводки;
- Автономные on-line датчики P/T;

Масштабирование и точки роста

- Проведена детальная корреляция западного борта для выделения ЦИ;
- Запланировано бурение ГС в 2024 г;
- Рассмотрение возможности бурения ЗБГС;
- Внедрение ГС с МГРП;

Спасибо за внимание

