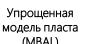



# Опыт построения и применения и интегрированных моделей

## Жизненный цикл интегрированной модели






## Интегрированное моделирование

#### Компонентное исполнение интегрированной модели (IPM PETEX)

#### Оперативное планирование



(MBAL)





Модели скважин (Prosper)



Модель системы сбора (GAP)

#### Стратегическое планирование









Геологогидродинамиче ская модель (Tempest)

Интегратор (Resolve)

Модели скважин (Prosper)

Модель системы сбора (GAP)

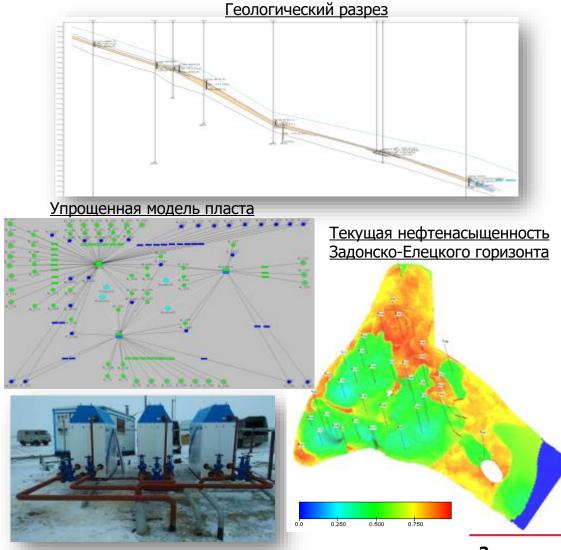
до 1 года

#### Решаемые задачи

от 1 года

- формирование технологических режимов
- управление недоборами
- расчет потенциалов отдельных **УЗЛОВ**
- уточнение и приоритизация ГТМ
- расчет оптимизационных мероприятий
- уточнение норм отбора
- экспертное сопровождение ИМ

- формирование вариантов стратегии разработки
- создание вариантов концептуальных моделей обустройства
- корректировка проектов разработки и обустройства месторождений
- расчет уровней добычи с учетом влияния наземной инфраструктуры
- формирование предложений норм отбора и программы ГТМ




Разрабатывается с 1968 года 1 нефтяной объект Действующий фонд 19 скважин

#### Задачи:

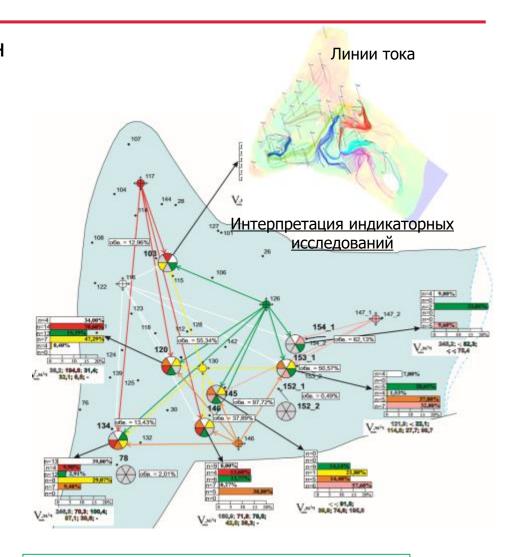
- Оценка эффективности системы ППД (закачка воды), поиск оптимальных режимов работы
- Оценка влияния наземной инфраструктуры на расчетные показатели добычи
- Оценка проектных решений по техническому переоснащению системы сбора
- Тестирование систем мониторинга в реальном времени (WebScada)

### ! Отсутствие в залежи собственной воды





Оценка влияния нагнетательных скважин на добывающие


Комплексный анализ разработки

Индикаторные исследования

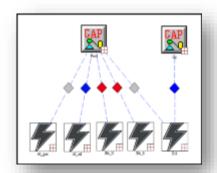
Переадаптация ГГДМ по результатам исследований

## Увеличение качества прогноза





! Адаптация по результатам индикаторных исследований




Разрабатывается с 1990 года 3 нефтяных и 5 газовых объектов Действующий фонд 47 скважин, из них 30 фонтанных

#### Задачи:

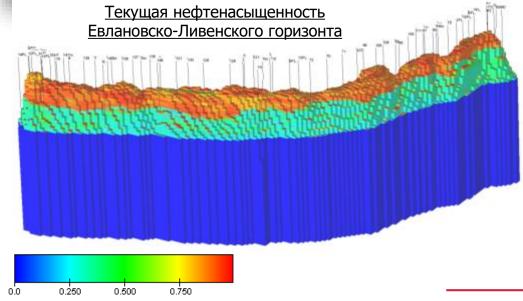
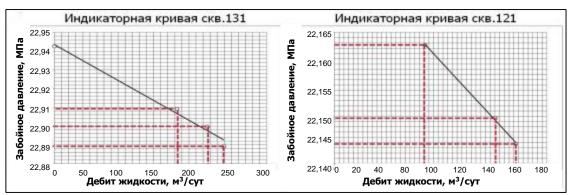

- Оценка взаимовлияния нефтяного и газового фонда в условия единой системы транспорта продукции
- Оценка влияния наземной инфраструктуры на расчетные показатели добычи
- Продление сроков фонтанирования скважин

Схема интеграции в конфигурации с ГГДМ



#### ! Низкие фактические депрессии








**Основная особенность месторождения** - работа фонтанных скважин с низкими депрессиями на пласт и скопление воды на забоях скважин, нестабильное водопроявление в

устьевых пробах.



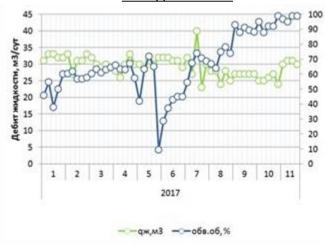
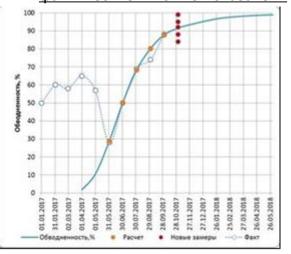

Забойное давление

График влияния обводненности на


<u>Графики пересечений характеристических</u> кривых для обводненности

| W = 10.8% | W =

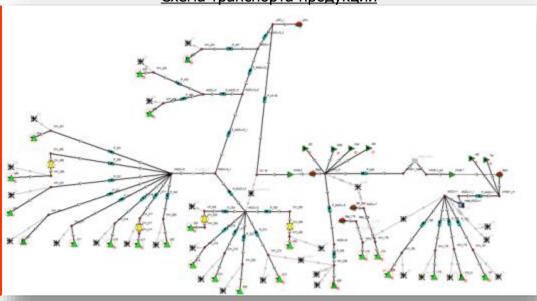
<u>График фактической динамики</u> <u>обводненности</u>



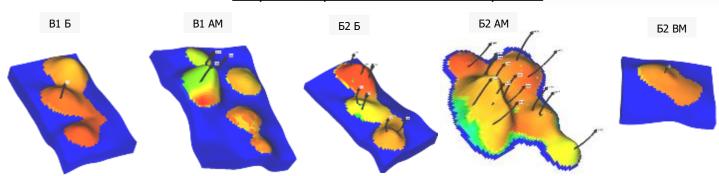
<u>График расчета обводненности на</u> фактические и новые показатели






Разрабатывается с 2008 года
3 нефтяных объекта (по 3 купола)
Действующий фонд 24 скважины

Высоковязкая нефть μ=402,8 мПа•с


#### Задачи:

- Оценка эффективности внедрения ППД
- Оценка эффективности проектного фонда скважин
- Подбор оптимальных точек подачи растворителя для обеспечения стабильного транспорта УВ в условиях высокой вязкости
- Оценка влияния наземной инфраструктуры на расчетные показатели добычи

#### Схема транспорта продукции



#### Текущие нефтенасыщенности по куполам





#### Оценка влияния вязкости нефти на параметры работы УЭЦН

Высокий коэффициент износа



Реологические исследования



60000

50000

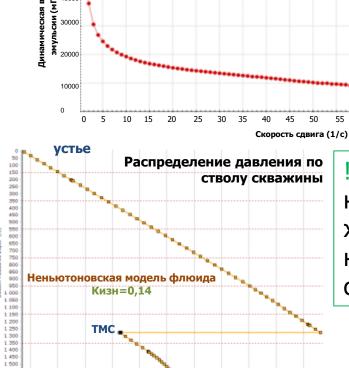
(2) 40000 **a** 

Использование модели неньютоновской жидкости

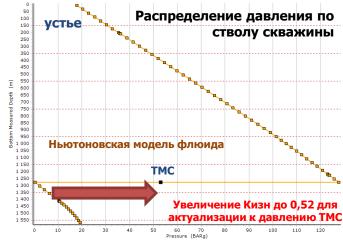


Корректный коэффициет износа

сдвига


Зависимость динамической

вязкости эмульсии от скорости


# Скважина 3 (наработка 300 сут.)

#### Результаты адаптации:

| Модель флюида  | Коэффициент<br>износа насоса |
|----------------|------------------------------|
| Ньютоновская   | 0,52                         |
| Неньютоновская | 0,14                         |



70 80 Pressure (BARg) ! Применение модели неньютоновской жидкости для настройки модели скважин





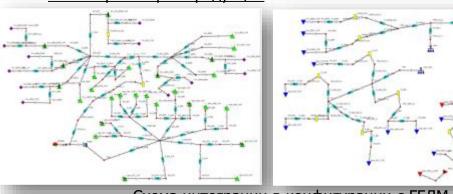
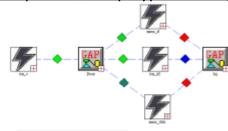
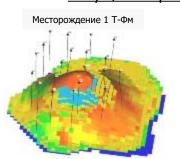
Разрабатывается с 2006 года 5 нефтяных объектов Действующий фонд 42 скважины

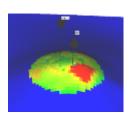
#### Задачи:

- Оценка эффективности системы ППД (расчет вариантов циклической закачки)
- Оценка эффективности проектного фонда скважин
- Оценка влияния наземной инфраструктуры на расчетные показатели добычи

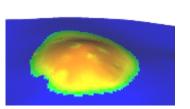
! Одновременно-раздельная добыча (ОРД), Водогазовое воздействие (ВГВ)

#### Схема транспорта продукции

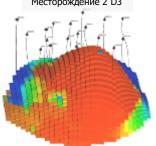






Схема интеграции в конфигурации с ГГДМ




#### Текущие нефтенасыщенности




Месторождение 1 Тл-Бб



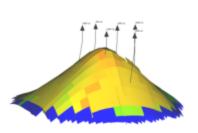
Месторождение 1 Вр-Бш



Месторождение 2 D3



Месторождение 2 vizey



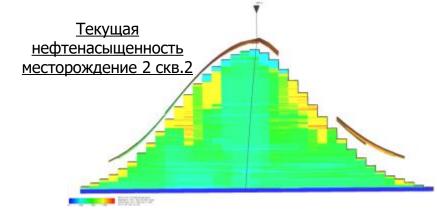




Схема скважин ОРД в GAP бриковкий горизс 1677,8 - 1745,4 м.



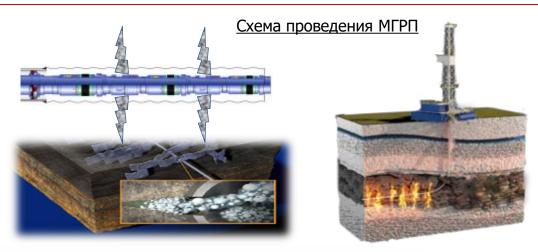


Циклическая закачка водогазовой смеси



Создание моделей скважин с оборудованием для ОРД

> ! Сформированы подходы для создания моделей скважин с ОРД и водогазового воздействия



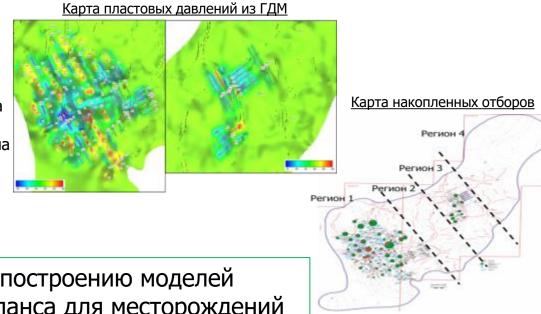

Разрабатывается с 2009 года 6 нефтяных объектов Действующий фонд 150 скважин

## ! Сверхнизкая проницаемость - 0,87 x10<sup>-3</sup> мкм<sup>2</sup>

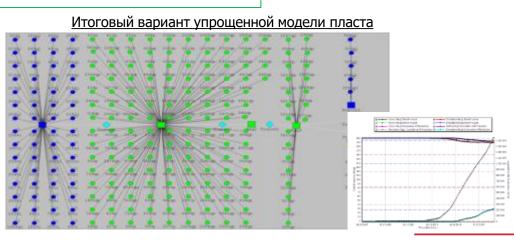
#### Задачи:

- Оценка проектных решений по системе сбора и транспорта
- Оценка эффективности ППД (с точки зрения энергетического состояния залежи)









#### Особенности месторождения:

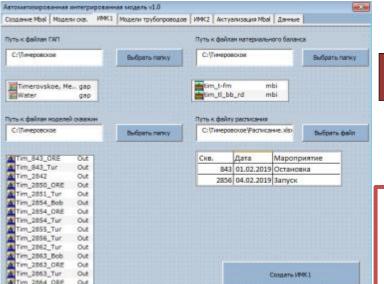
- целевая залежь (пласт  $AC_3$ ) имеет большую площадь (более 800 млн. м<sup>2</sup>);
- коллектор сверхнизкопроницаемый (0,87 x10<sup>-3</sup> мкм<sup>2</sup>);
- нефть маловязкая (0,77 мПа·с);
- залежь имеет два разбуренных участка, находящихся на большом (~4000м) расстоянии друг от друга;
- разработка ведется горизонтальными скважинами (длина ГС 1000 м) с МГРП;
- разрабатывается на режиме поддержания пластового давления (ППД) путем закачки воды в пласт;
- радиус дренирования скважин (~100м)
- действующий фонд скважин на момент построения модели 150 единиц.

! Создан подход к построению моделей материального баланса для месторождений со сверхнизкой проницаемостью





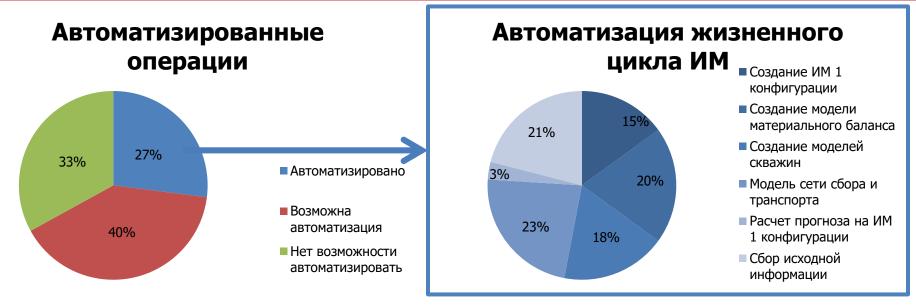



## Пример автоматизации процессов построения ИМ

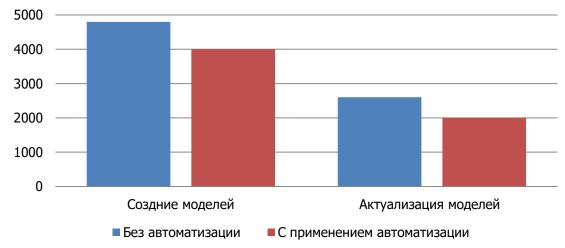







#### Интерфейс загрузки данных








## Технологическая эффективность применения автоматизации



## Сокращение времени создания и актуализации **ИМ** от применения автоматизации







# Итоги работы

- Совершенствование интегрированных моделей с использованием новых подходов для случаев:
  - отсутствия пластовой воды в залежи и наличия системы ППД
  - низких фактических депрессий
  - высокой вязкости нефти
  - одновременно-раздельной добычи
  - водогазового воздействия
  - сверхнизкой проницаемости пород
  - малоэффективной закачкой
- Автоматизированы операции по созданию и актуализации ИМ







Всегда в движении!