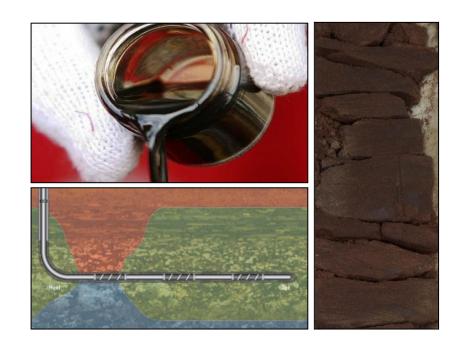


Технология ГС с МГРП для повышения эффективности разработки пластов Покурской свиты Лапин К.Г., Павлов В.А., Павлюков Н.А. ООО «Тюменский нефтяной научный центр»

XIX научно-практическая конференция «Геология и разработка месторождений с трудноизвлекаемыми запасами», Анапа, 24-26.09.2019

Постановка задачи/описание проблематики

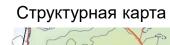


Особенности пластов ПК

- Высокая вязкость нефти (100–400 сП)
- Слабосцементированный коллектор
- Обширная газовая шапка
- Сложное геологическое строение

Проблематика разработки пластов ПК

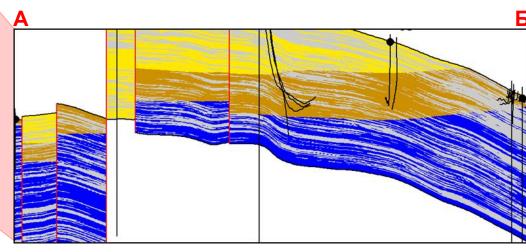
- Низкий КИН
- Прорывы газа из газовой шапки
- «Кинжальные» прорывы воды при заводнении
- Активный вынос песка, снижение дебита




В компании Роснефть реализуется проект, направленный на повышение эффективной разработки пластов ПК:

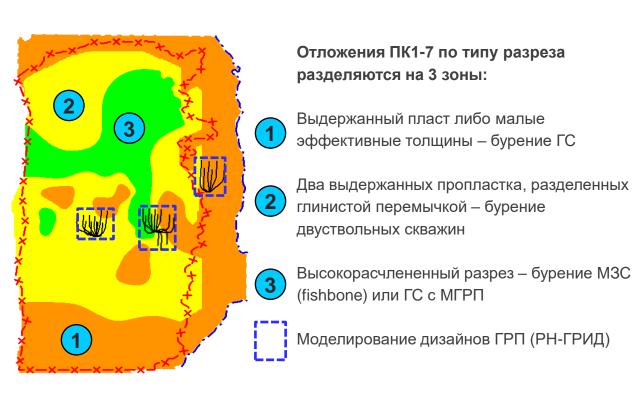
- Технологии эффективной эксплуатации подгазовых оторочек малой толщины
- Технологии заканчивания скважин
- Технологии эффективного вытеснения высоковязкой нефти (в т.ч ФХ МУН)
- Обоснование оптимальных режимов работы скважин с учетом геомеханических эффектов

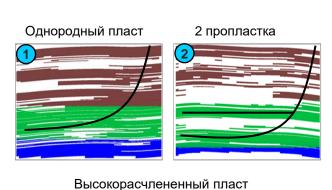
Геологическое строение



600 650 700 750 800 850 900 950 1000 1050_M

Параметры	Значение
Средняя глубина залегания кровли (а.о.), м	-769
Средняя нефтенасыщенная толщина, м	26
Коэффициент нефтенасыщенности, доли ед.	0.6
Коэффициент пористости, доли ед.	0.3
Проницаемость, мД	519
Расчлененность, ед.	56
Начальная пластовая температура, ⁰ С	17-20
Начальное пластовое давление, МПа	8,3-9,4
Газовый фактор, м³/т	21
Вязкость нефти в пластовых условиях, мПа с	220

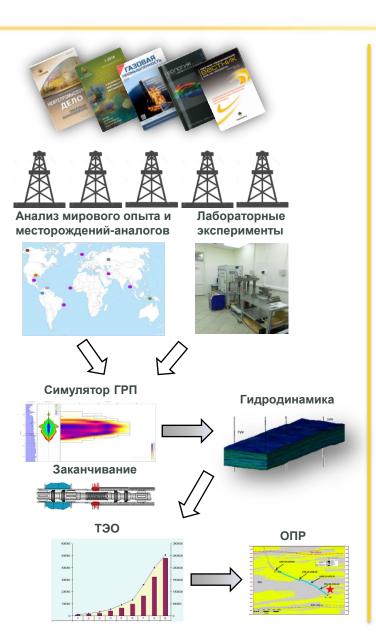

Цель реализации ГРП


Цель ГРП: разрыв глинистых перемычек и увеличение объема дренируемых запасов за счет приобщения дополнительных продуктивных пропластков

Эффекты:

- увеличение накопленной добычи нефти
- увеличение продуктивности скважин

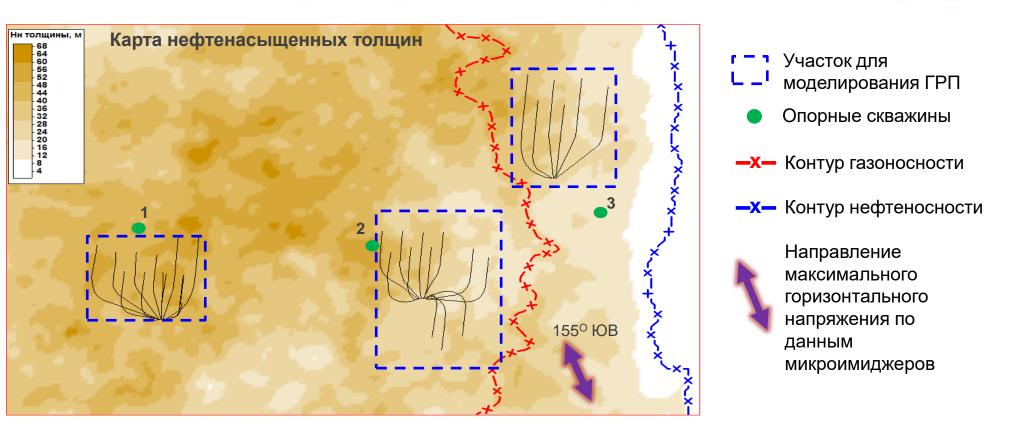
заканчивания



Типовые разрезы и варианты

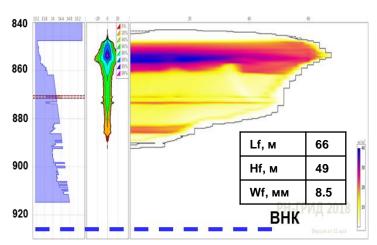
Решаемые задачи

- Лабораторное тестирование проппантов и жидкостей ГРП
- Создание 1Д геомеханических моделей и моделирование дизайнов ГРП
- Выбор компоновок заканчивания скважин
- Гидродинамические расчеты на секторных моделях и технико-экономическая оценка эффективности
- Формирование программы ОПР

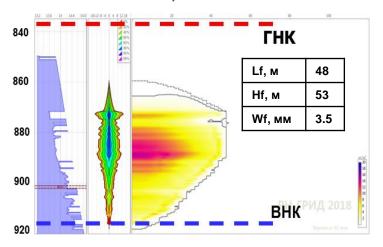

Параметры, влияющие на геометрию трещины

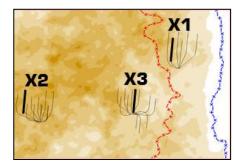
Параметр	Влияние	Источник получения		
Геомеханическая модель	Геометрия трещины ГРП	Построена для опорных скважин с использованием расширенного комплекс ГИС, результаты тестирования керна		
Жидкость ГРП	Проницаемость пласта и трещины ГРП	Лабораторные эксперименты на керне для оценки разбухания образцов и влияния на проницаемость пласта		
Проппант	Проницаемость трещины ГРП	Лабораторные эксперименты на керне для оценки вдавливания проппанта, базовой и остаточной проводимости проппантной пачки		
Скорость закачки	F	Моделирование геометрии трещин ГРП,		
Утечки жидкости ГРП	Геометрия трещины ГРП	опыт выполненных ГРП на месторождениях-аналогах		

Выбор скважин для моделирования ГРП

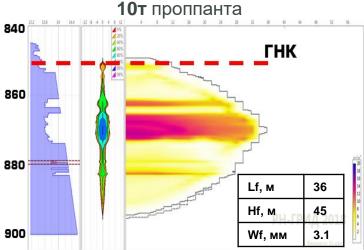

Для целей моделирования ГРП выбраны 3 участка с разными геологическими особенностями:

- Различные эффективные нефтенасыщенные толщины
- Зоны с глинистой перемычкой, разделяющей пласты с удаленным ГНК и ВНК
- Контактные запасы с водой (без глинистых перемычек) оценка значения и динамики обводненности при прорыве под ВНК


Результаты моделирования дизайнов ГРП



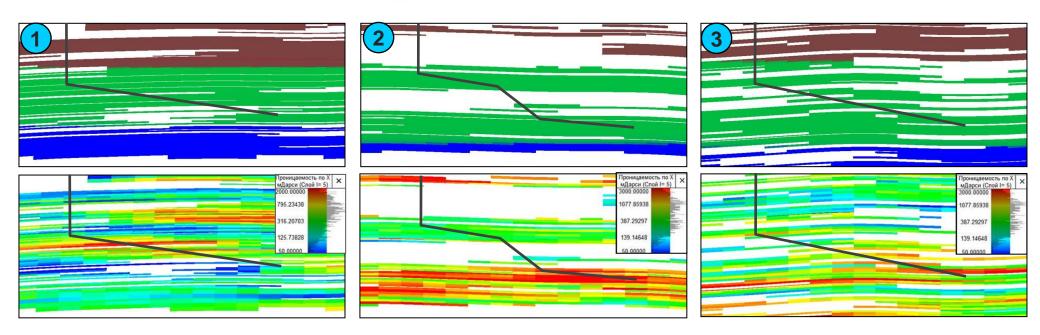
Скважин **X1 60т** проппанта

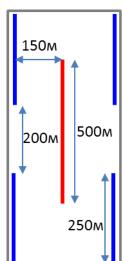


Скважина **X2 20 т** проппанта

Скважина Х3

Вертикальные трещины приобщают пропластки, разделенные глинистыми перемычками


В скважине Х1 трещина не прорывается в ВНК


В скв. X2 и X3 трещины прорываются в ГНК и ВНК при небольших объемах закачки

Требуется индивидуальный подбор дизайна для каждой скважины

Секторное ГД моделирование

Расчеты на 3 секторных ГДМ, соответствующих выделенным типам разреза:

- ГС
- ГС с МГРП
- M3C (fishbone или 2-ствольная скважина)

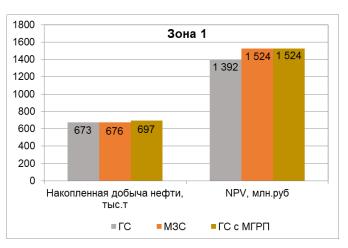
Моделировался 1 элемент разработки

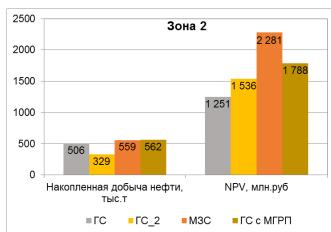
Управление скважинами на прогноз:

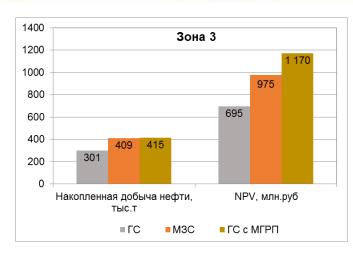
Принятые на м/р Рзаб

Период оценки: 50 лет

Условия остановки скважин:


Обводненность - 98%


Qн – 1 т/сут


 $\Gamma H \Phi - 2000 \ м3/м3$

Сопоставление технико-экономической эффективности и риски

Зона 1 - бурение ГС. МЗС и ГРП в однородном разрезе не обеспечивают существенного прироста накопленной добычи нефти

Зона 2 - 2-ствольные МЗС обеспечивают максимальный технико-экономический эффект

Зона 3 - МЗС и **ГС с МГРП** сопоставимы по накопленной добыче нефти. ГС с МГРП характеризуется большим NPV за счет высокого стартового дебита

Основные риски				
M3C	ГС с МГРП			
1. Пересыпание открытых участков стволов в процессе эксплуатации	 Прорыв в газо- и/или водонасыщенные интервалы Интенсивный вынос проппанта и песка в процессе эксплуатации 			
2. Выбытие скважины в случае прорыва газа и/или воды в один из боковых стволов	 Невозможность создания трещины из-за высоких утечек Образование полимерной корки на стенке трещин Вдавливание проппанта в процессе эксплуатации скважины Интенсивное обводнение от закачки 			

Компоновки для заканчивания скважин

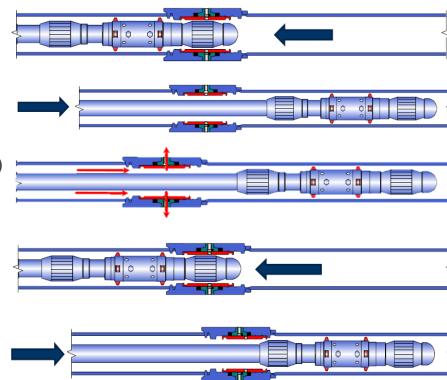
Компоновка	Положительные стороны	Отрицательные стороны	Комментарий
Заколонные пакера и сдвижные муфты с фильтрами	 Последующая разработка через фильтры, муфты ГРП закрываются ключом; Контроль выноса песка 	• Высокая стоимость; • Возможно заклинивание муфты	Отсутствует в Компании
Заколонные пакера и муфты, активируемые шарами с глухой трубой	Активация шарами;Возможность использования растворимых шаров и седел;Низкая стоимость	Нет возможности повторного ГРП;Последующая добыча только через фрак порт;Нет контроля выноса песка	• Большой опыт реализации в Компании
Заколонные пакера и сдвижные муфты с глухой трубой	• Обеспечение доступа к пласту с помощью муфт ГРП; • Муфты ГРП активируют с помощью специального инструмента (спускается на НКТ или ГНКТ); • Селективный ГРП	Последующая добыча только через фрак порт;Возможно заклинивание муфты;Нет контроля выноса песка	
Заколонные пакера и разрывные муфты с глухой трубой+селективный пакер	• Чашечный пакер для ГРП спускается на НКТ и располагается напротив порта; • Разобщение интервалов ГРП осуществляется путем размещения чашечного пакера в интервале вышележащей муфты; • Селективный ГРП	 Последующая добыча только через фрак порт; Нет контроля выноса песка 	• Большой опыт реализации в Компании
Заколонные пакера и муфты, активируемые шарами (два седла) с фильтрами	 Последующая разработка через фильтры, муфты ГРП закрываются вторым шаром; Контроль выноса песка 	• Высокая стоимость; • Возможно заклинивание муфты; • Отсутствие готовых компоновок	• Опыт отсутствует • Компоновка находится на стадии производства (образцы отсутствуют)

Схема проведения МГРП в «новых» скважинах

- Спуск и активация ключа
- Открытие порта движением ключа вверх/вниз

 Деактивация ключа и позиционирование его ниже порта или извлечения из скважины

Проведение ГРП по малому затрубу (ключ в скважине)
 или через НКТ (ключ извлечен из скважины)


- Промывка
- Позиционирование ключа выше порта и активация ключа

- Закрытие порта движением ключа вниз
- Переход к следующему интервалу

- После проведения ГРП во всех интервалах извлечение ключа
- Спуск ключа (другого типа) и открытие элементов фильтра в горизонтальном участке скважины

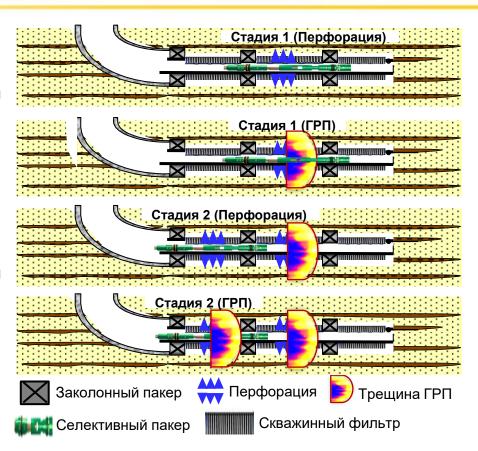
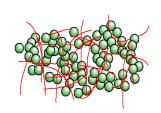
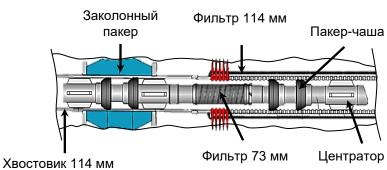


Схема проведения ГРП на «старых» скважинах

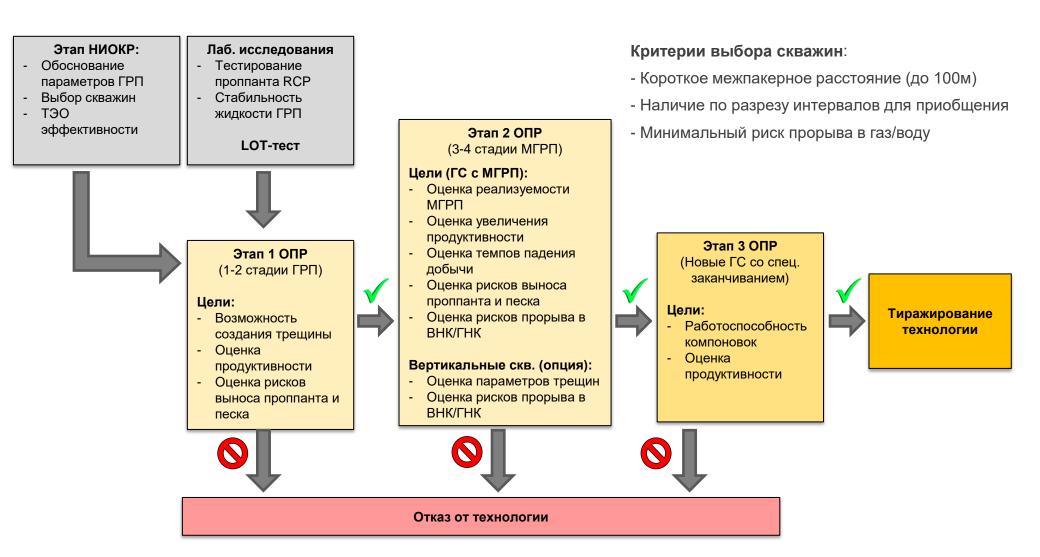
- Позиционирование селективного пакера с ГПП напротив заколонных пакеров в первом интервале
- Проведение перфорации (перфоратор/гидропескоструйная перфорация (ГПП) на селективном пакере
- <u>2</u>
- Проведение ГРП (стадия 1)
- 3
- Позиционирование селективного пакера с ГПП напротив заколонных пакеров в другом интервале
- Проведение перфорации (перфоратор/гидропескоструйная перфорация (ГПП) на селективном пакере
- <u>\</u>
- Проведение ГРП (стадия 2)


Высокие риски ГРП с текущим заканчиванием:

- Интенсивный вынос твердых частиц
- Возможные технические ограничения заколонных пакеров
- Высокие утечки
- Проведение слепого ГРП
- Отсутствие возможности оценки высоты трещины


Мероприятия по ограничению выноса песка

- Использование проппанта RCP с активатором спекания при низких температурах:
 - Необходимы лаб. тесты на спекание при 20°C
 - Тесты на стабильность жидкости ГРП при использовании активатора
- Использование химического отклонителя для повторных ГРП путем закачки через ГНКТ/НКТ в интервал перфорации:
 - Сомнения в креплении к фильтрам
 - Смещение отклонителя при СПО
- Использование 2-пакерных компоновок для изоляции:
 - Полное прекращение работы интервала
 - Сомнения в креплении к фильтрам
 - Снижение номинального диаметра
- Использование пластырей для перекрывания зон:
 - Нет опыта в горизонтальных скважинах
 - Сомнения в креплении к фильтрам
 - Смещение пластыря при СПО



Общая схема реализации ОПР

Выводы

- По результатам моделирования дизайнов ГРП показана возможность приобщения продуктивных интервалов, разделенных глинистыми перемычками. Требуется индивидуальное моделирования дизайнов ГРП для каждой скважины.
- Реализация ГРП в скважинах с высокорасчлененным разрезом обеспечивает прирост накопленной добычи нефти на 30% относительно ГС и характеризуется положительным экономическим эффектом
 - > По технико-экономической эффективности ГС с МГРП в расчлененном разрезе сопоставимы с технологией fishbone
 - > Требуется реализация ОПР для снятия существующих неопределенностей и выбора технологии .
- По текущей геологической модели потенциал для реализации МГРП ~ 80 проектных скважин. Также ГРП
 эффективен в фактических низкопродуктивных скважинах с высокой долей неколлектора по стволу.
- Для реализации ГРП в пластах ПК рекомендуется компоновка заканчивания, совмещающая муфты ГРП и фильтровые элементы для предотвращения выноса песка. При проведении ГРП в скважинах с текущим заканчиванием рекомендуется применение сдвоенного селективного пакера.
- Разработана схема проведения ОПР по испытанию технологии, ведутся подготовительные работы.

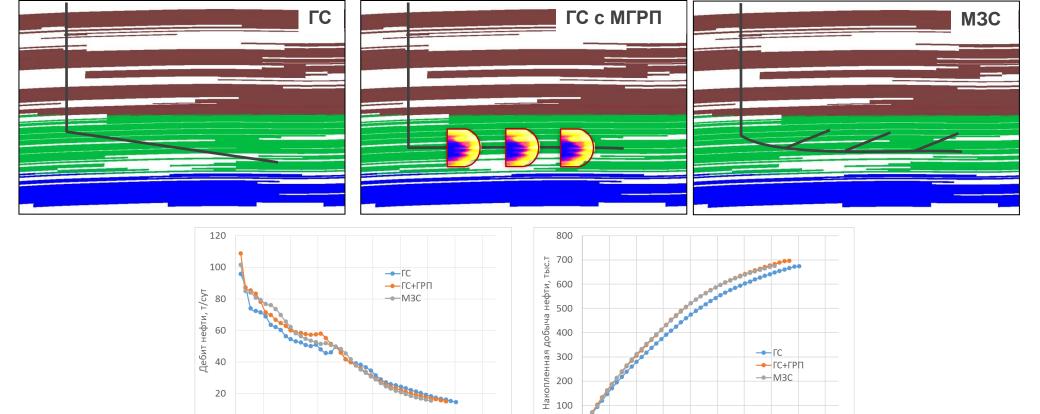
Контактная информация

ООО «ТННЦ»

(Корпоративный научно-проектный комплекс ПАО «НК «Роснефть»)

г. Тюмень, ул. Осипенко, д. 79/1 тел. (3452) 55-00-55

e-mail: tnnc@rosneft.ru



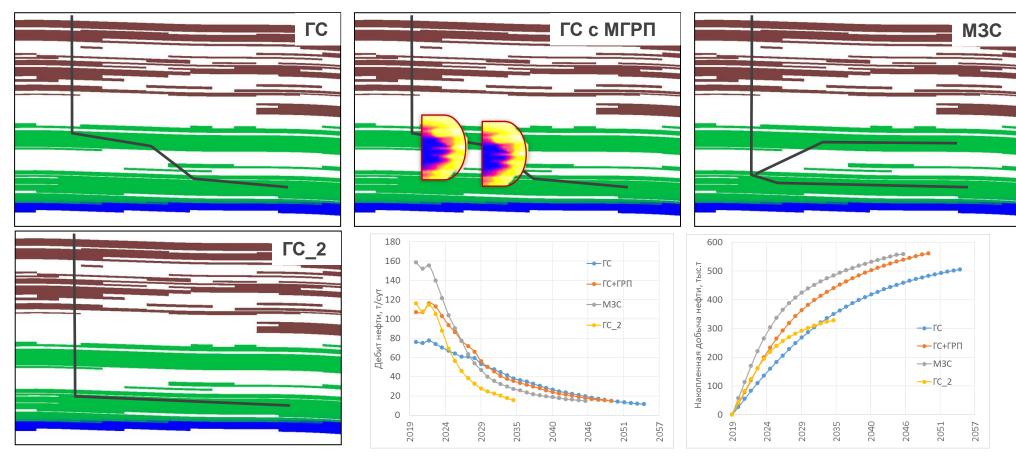
Дополнительные слайды

Сопоставление технологических показателей (зона 1)

Показатели	ГС	МЗС	ГС с МГРП
Накопленная добыча нефти, тыс.т	673	676	697
Накопленная добыча жидкости, тыс.т	6 021	5452	5 991
NPV, млн.руб	1 392	1 524	1 524

2019 2024 2029 2035 2040 2046 2051 2057 2062 2068

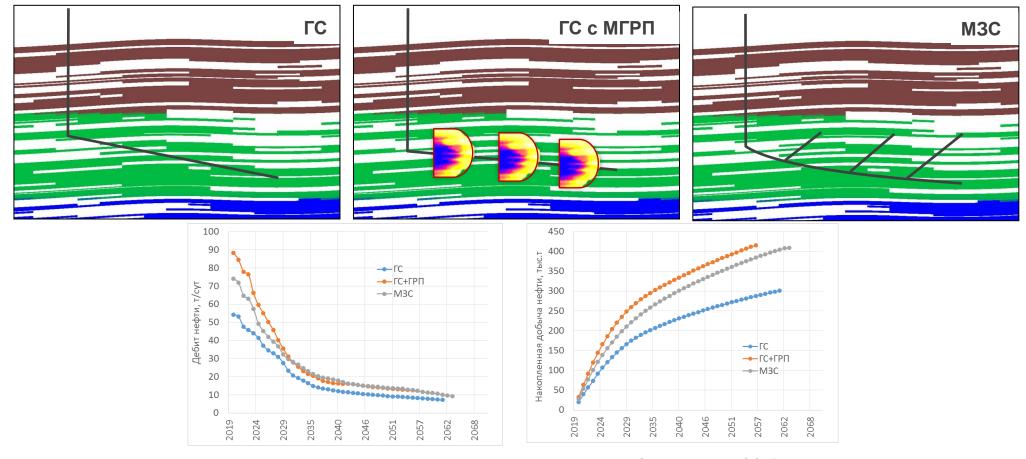
20


Реализация МГРП нецелесообразна (отсутствие прироста КИН, высокие риски)

Оптимальный вариант: ГС

2019 2024 2029 2035 2040 2046 2051 2057 2062 2068

Сопоставление технологических показателей (зона 2)



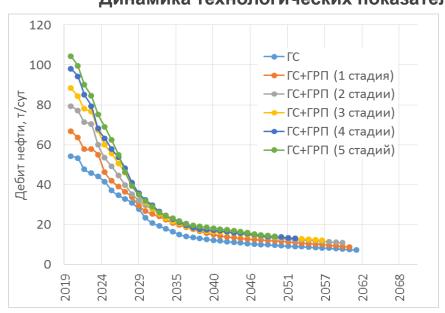
Показатели	ГС	ΓC_2	МЗС	ГС с МГРП
Накопленная добыча нефти, тыс.т	506	329	559	562
Накопленная добыча жидкости, тыс.т	4 613	3 046	6 672	6 216
NPV, млн.руб	1 251	1 536	2 281	1 788

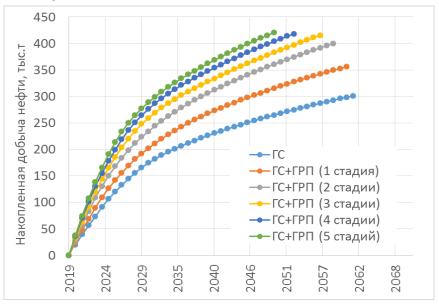
Реализация МГРП нецелесообразна Оптимальный вариант: 2-ствольные МЗС

Сопоставление технологических показателей (зона 3)

Показатели	ГС	МЗС	ГС с МГРП
Накопленная добыча нефти, тыс.т	301	409	415
Накопленная добыча жидкости, тыс.т	4 005	5 835	6 592
NPV, млн.руб	695	975	1 170

ГС с МГРП и M3C fishbone сопоставимы по величине накопленной добычи нефти

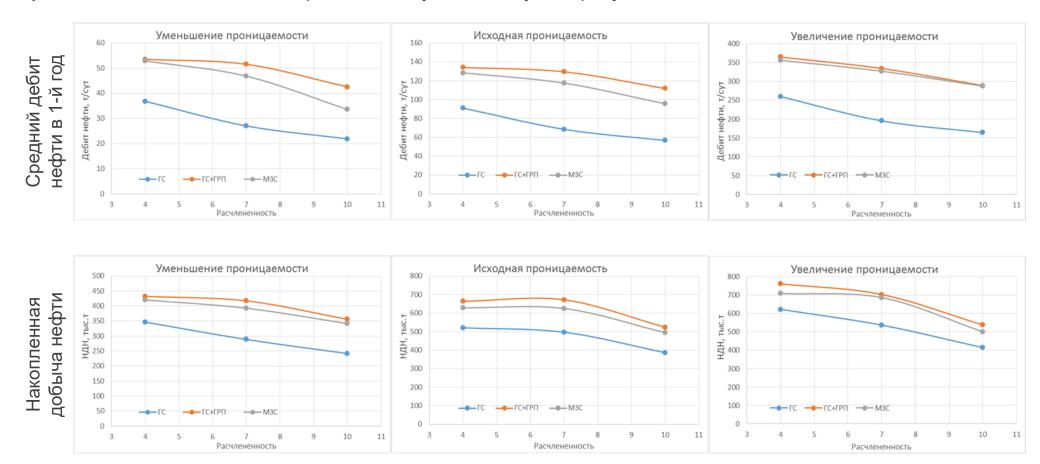

ГС с МГРП характеризуется более высоким NPV за счет стартового дебита


ГС менее эффективны

Количество стадий МГРП

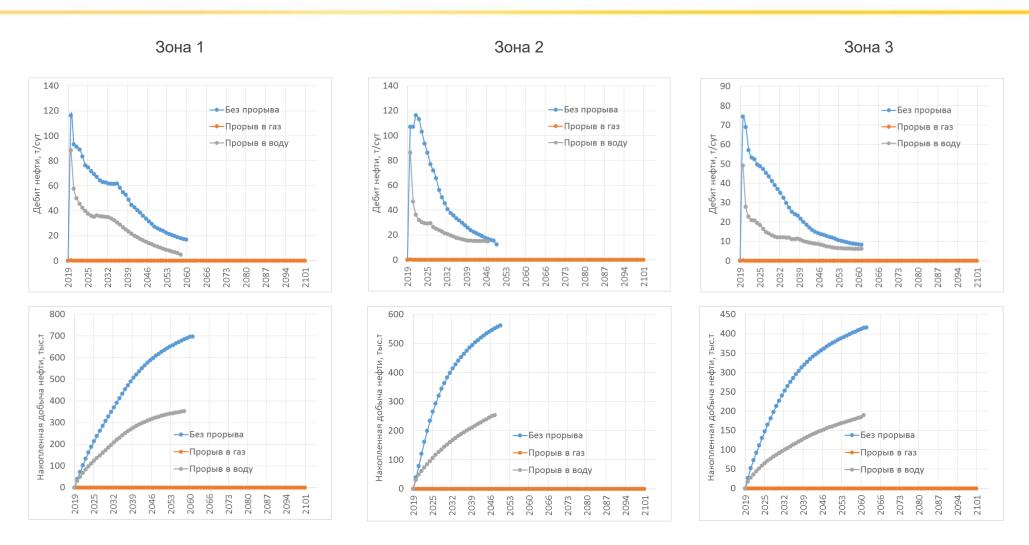
Динамика технологических показателей для разного числа стадий МГРП

Показатели	ГС	1 стадия	2 стадии	3 стадии	4 стадии	5 стадий
Накопленная добыча нефти, тыс.т	301	356	403	415	418	421
Накопленная добыча жидкости, тыс.т	4 005	5 009	6 329	6 592	6 492	6 225
КИН, д.ед	0,126	0,149	0,167	0,173	0,175	0,176
NPV, млн.руб	695	861	1 048	1 170	1 272	1 351


С позиции технико-экономической эффективности рекомендуется реализация не менее 3 стадий МГРП

Расчлененность и проницаемость

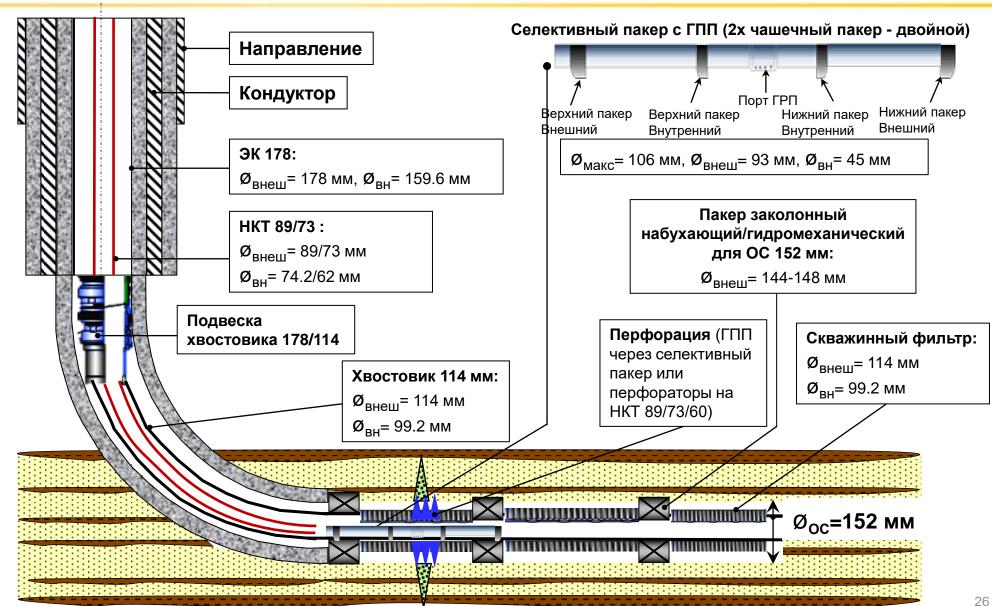
Расчлененность: от 4 до 10


Проницаемость: изменение в 3 раза в большую и меньшую сторону

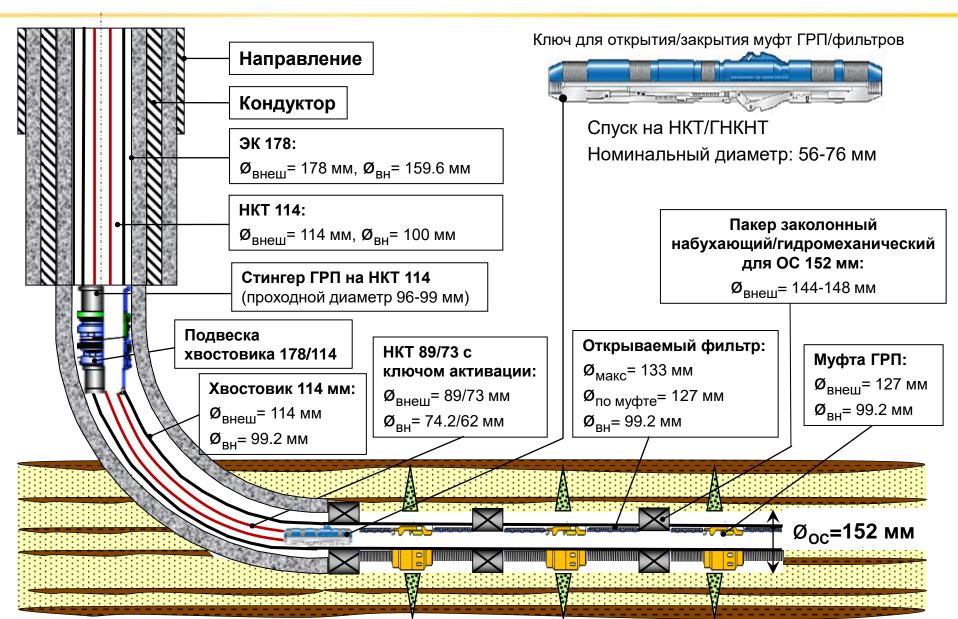
- При варьировании расчлененности и проницаемости технологии МЗС и ГС с МГРП остаются сопоставимы
- ГС во всех вариантах проигрывает по дебиту и накопленной добыче нефти
- Преимущество ГС с МГРП над МЗС отмечается при увеличении расчлененности и снижении проницаемости

Прорыв трещин ГРП в ГНК/ВНК

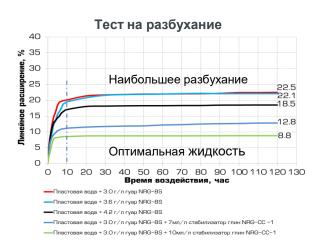
При прорыве трещины в ГНК скважина сразу останавливается из-за превышения допустимого ГФ Прорыв в ВНК менее критичен, отмечается снижение накопленной добычи нефти примерно в 2 раза


Риски и неопределенности при реализации ГРП

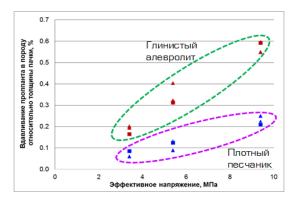
Неопределенности и риски Мероприятия для снижения/снятия неопределенности		Уровень неопределенности	Ранг критичности для проведения ГРП
Калибровочные данные для профиля напряжений (давление закрытия, эффективное давление)	Проведение LOT теста, мини-ГРП	Высокий	Высокий
Высокая проницаемость (оценка эффективности жидкости)	Проведение LOT теста, мини-ГРП	Высокий	Высокий
Слабая консолидация (вынос твердых частиц) Использование проппанта со смоляным покрытием, использование компоновок заканчивания с фильтром		Высокий	Высокий
Разбухание и влияние на проницаемость коллектора при воздействии жидкостей ГРП	Использование стабилизатора глин и жидкости ГРП с более низкой загрузкой полимера (выполнены лабораторные эксперименты в рамках этапа 5)	Низкий	Низкий
Низкая пластовая температура (деструкция жидкости ГРП)	Выполнение тестов при подготовке к ГРП для подбора эффективного типа брейкера (при ГРП на Восточно-Мессояхском месторождении использовался энзимный брейкер с концентрацией до 3 л/м3)	Низкий	Низкий
Приобщение водо- и газонасыщенных участков пласта при отсутствии барьеров	Проведение ОПР на вертикальных или наклонно-направленных скважинах с возможностью оценки высоты трещины. Малообъемные ГРП	Высокий	Высокий


Компоновка заканчивания для ГРП на старых скважинах

Компоновка заканчивания для МГРП на новых скважинах

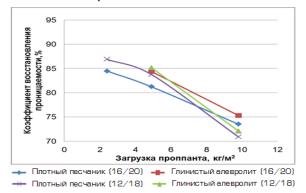


Результаты лабораторных экспериментов



Nº	Типы тестов
1	Выбор жидкости. Тест на разбухание пород*
2	Выбор жидкости. Влияние жидкостей ГРП на проницаемость пласта*
3	Выбор проппанта. Оценка вдавливания**
4	Определение базовой и остаточной проводимости проппантной пачки**

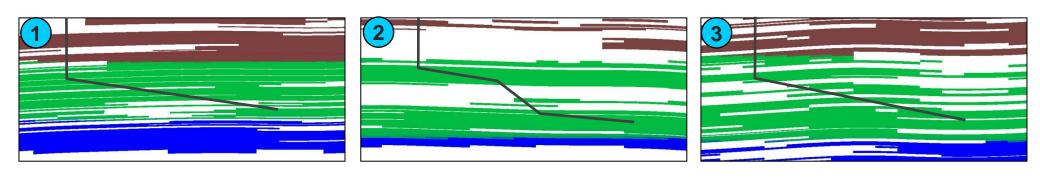
^{* -} влияние на породу

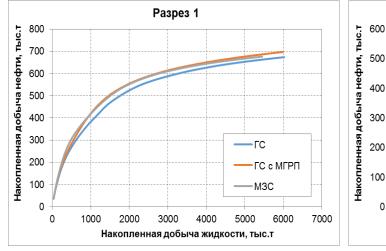

Вдавливание проппанта в породу

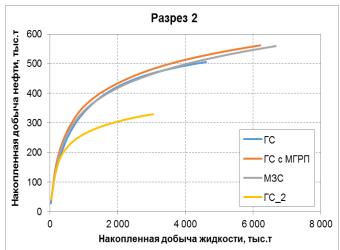
Влияние жидкостей ГРП на проницаемость

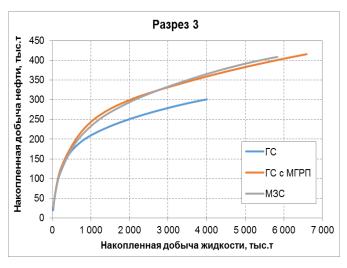
№ опыта	Жидкость воздействия	Исходная проницаемость по нефти (<u>Кпр</u>), <u>мД</u>	Проницаемость по нефти после воздействия жидкостью ГРП, мД	Коэффициент восстановления, %
1	25 гель (пластовая вода + 3.0 г/л гуар + 10 мл/л стабилизатор глин)	183.6	111.8	60.9
2	30 гель (пластовая вода + 4.2 г/л гуар + 10 мл/л стабилизатор глин)	210.3	94.2	44.8
3	35 гель (пластовая вода + 4.2 г/л гуар + 10 мл/л стабилизатор глин)	256.9	69.1	26.9
4	25 гель (пластовая вода + 3.0 г/л гуар + 10 мл/л стабилизатор глин)	75.4	40.3	53.4
5	30 гель (пластовая вода + 3.6 г/л гуар + 10 мл/л стабилизатор глин)	30.7	12.5	40.7
6	35 гель (пластовая вода + 4.2 г/л гуар + 10 мл/л стабилизатор глин)	50.8	15.6	30.7

Изменение проницаемости проппантной пачки




- Для минимизации разбухания глин необходимо использовать добавки в виде стабилизатора глин с концентрацией не менее 10 л/м³
- Оптимальной жидкостью ГРП является 25й гель с загрузкой полимера 3 кг/м³
- Вдавливание проппанта в породу составляет менее 1%
- Коэффициент восстановления проницаемости проппантной пачки 70-85%


^{** -} влияние на проппантную упаковку


Выработка запасов

Для всех разрезов ГС с МГРП и МЗС характеризуются сопоставимой эффективностью выработки запасов ГС с МГРП и МЗС эффективнее, чем ГС в высокорасчлененном и «двухслойном» пласте