

Костюченко С.В., д.т.н., старший эксперт Черемисин Н.А., к.т.н., старший эксперт

Введение: Актуальность работы

Важнейшие вопросы разработки нефтегазовых месторождений:

- 1. Где локализованы текущие запасы нефти / газа ?
- 2. Способна ли реализованная система разработки обеспечить достижение проектного КИН?
- 3. Как модифицировать систему разработки и довыработать запасы?

Особая актуальность*:

- При разработке залежей с ТРИЗ и с высоковязкой нефтью
- На поздних стадиях разработки месторождений
- При неэффективных или несбалансированных системах заводнения
- При высоком обводнении скважин и при низких дебитах скважин по нефти

Могут ли цифровые модели дать ответ на эти вопросы?

^{* [}Стратегия Компании РН до 2022 года]
[Стратегия развития проектов ТРИЗ и ВВН ОАО НК РН]
[Стратегия развития головного института по направлению "Наука в разведке и в добыче"]

Достоинства и проблемы цифровых геолого-гидродинамических моделях

Цифровые модели:

- 1. Накапливают данные и знания:
 - история работы скважин
 - строение продуктивной толщи
 - геолого-геофизические свойства пластов
 - проведенные геолого-технологические мероприятия на скважинах
 - результаты исследований скважин и межскважинных пространств: ГИС, ГДИС, гидропрослушивания, трассеры и др.
- 2. Рассчитывают уровни добычи для обоснования проектных решений
- 3. Результаты готовы для визуализации в виде карт и разрезов

Ограничения традиционных моделей:

Параметр	Традиционные модели и технологии	Цель
КИН	КИН слабо зависит от ПСС	КИН должен зависеть от ПСС и от системы разработки
Коэффициент охвата вытеснением (Кохв)	Кохв стремится к "1"	Необходим расчет текущего Кохв и его динамики
Локализация текущих запасов	Упрощенное решение	Необходимы карты: • Невыработанных зон ("целиков нефти") • Охвата вытеснением текущих запасов нефти

Необходим расчет охвата вытеснением!

Коэффициент охвата вытеснением

Коэффициент охвата вытеснением:

отношение нефтенасыщенного объема продуктивного пласта, охваченного процессом вытеснения, ко всему нефтенасыщенному объему пласта В ВЫбранном расчетном контуре [Нефтегазопромысловая геология. Терминологический справочник.1983]

Особое значение коэффициента охвата:

- 1. Входит в формулу: *КИН=Квыт*Еv*
- 2. Может количественно характеризовать эффективность разработки:
 - текущее состояние и динамику
 - варианты разработки и ГТМ
 - системы разработки разных объектов
- 3. Позволяет строить карты охвата текущих запасов:
 - Карты невыработанных зон
 - Карты запасов, охваченных и неохваченных вытеснением

Традиционный (обратный) расчет коэффициента охвата:

$$E_v^{end} = \frac{KWH}{K_{e \omega m}} = \frac{Q_{\partial o \delta}}{Q_{3an}} \cdot \frac{1}{K_{e \omega m}}$$

Q_{зап} - геологические запасы нефти

Ограничения традиционного $E_{\scriptscriptstyle v}^{\it end}$:

- 1. Характеризует систему разработки только на конец разработки
- 2. Характеризует объект разработки только целиком, не выделяя зоны охвата вытеснением
- 3. Не выделяет эффект применения технологий разработки в повышение эффективности разработки:
 - горизонтальные, многозабойные скважин, ЗБС и ГРП
 - интенсификация добычи, смена фильтрационных потоков и др.

Обобщение понятия "Коэффициент охвата вытеснением"

Наименование	Статус	Расчетная формула	Примечания			
Накопленный коэффициент охвата на конец разработки	Традиционное определение Кохв	$E_v^{end} = \frac{E_r^{end}}{E_d} = \frac{N_p^{end}}{N^{init}} \cdot \frac{1}{E_d} = \frac{N_p^{end}}{N^{init} \cdot E_d}$	Обратный расчет Кохв на конец разработки			
Накопленный коэффициент охвата на текущую дату		$E_{v}^{rec} = rac{N_{p}^{rec} + M_{p}^{red}}{N^{init} \cdot E_{d}}$	На конец разработки: $E_{v}^{rec}\Big _{N_{p}^{rec}=N_{p}^{end};M_{p}^{rec} o 0}=E_{v}^{end}$			
Текущий коэффициент охвата вытеснением	Новые определения	$e_{_{v}} = \frac{M_{_{p}}^{rec}}{N^{rec} \cdot E_{d}}$	Запасы нефти и воды, охваченные вытеснением: $M_{p}^{rec} M_{w}^{rec}$ Как их рассчитать?			
Текущий коэффициент вовлечения воды в разработку		$w_v = \frac{M_w^{rec}}{W^{rec}}$				

Обозначения:

 E_{ν} - коэффициент охвата

 E_r - коэффициент извлечения нефти (КИН)

 E_d – коэффициент вытеснения

е – текущий коэффициент охвата вытеснением

w - текущий коэффициент вовлечения воды

 N_p – накопленная добыча нефти

N – геологические запасы нефти

W – геологические запасы воды

 M_{p} – извлекаемые (мобильные) запасы нефти, охваченные вытеснением

 M_{w} – запасы воды, вовлеченные в разработку

Init - начальный

rec - текущий

end – конечный

Расчет коэффициентов охвата в цифровых моделях

Коэффициент охвата вытеснением накопленный (на конец разработки)

Коэффициент охвата вытеснением накопленный (на текущую дату)

Коэффициент охвата вытеснением текущий

Текущий коэффициент вовлечения воды в разработку

Текущий охват воздействием

$$E_{v}^{end} = \frac{FOPT^{end}}{FMOIIP} = \frac{FOPT^{end}}{\sum [BPORV*(BSOIL^{init} - BSOWCR^{init})]}$$

$$E_{v}^{rec} = \frac{FOPT^{rec} + FOIPL_{dren}^{rec}}{FMOIIP} = \frac{FOPT^{rec} + \sum [BPORV*(BSOIL^{rec} - BSOWCR^{rec})]}{\sum [BPORV*(BSOIL^{init} - BSOWCR^{init})]}$$

$$e_{v} = \frac{FOIPL_{dren}^{rec}}{FMOIP^{rec}} = \frac{\sum [BPORV*(BSOIL^{rec} - BSOWCR^{rec})]}{\sum [BPORV*(BSOIL^{rec} - BSOWCR^{init})]}$$

$$w_{v} = \frac{FWIPL_{dren}^{rec}}{FMWIP^{rec}} = \frac{\sum [BPORV*\frac{BVELO^{rec} - Vcrit}{k*Vcrit - Vcrit}*\frac{BSWAT^{rec} - BSWCR}{1 - BSWCR}]}{\sum [BPORV*BSWAT^{rec}]}$$

$$f_{v} = \frac{FMOIP^{rec} * e_{v} + FMWIP^{rec} * w_{v}}{FMOIP^{rec} + FMWIP^{rec}}$$

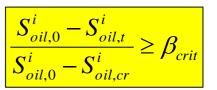
Текущая добыча нефти

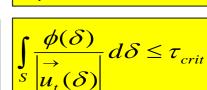
Текущий (фактический) КИН

Прогноз КИН (на текущую дату)

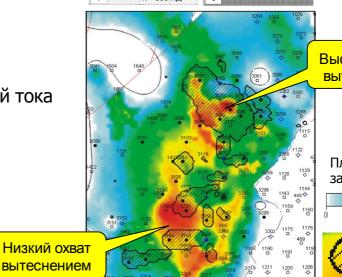
$$FOPT^{rec} = \sum [BPORV * (BSOIL^{rec} - BSOIL^{init})]$$

$$Er^{rec} = ROE = \frac{FOPT^{rec}}{FOIIP} = \frac{FOPT^{rec}}{\sum [BPORV * BSOIL^{init}]}$$


$$Er^{future} = \frac{FOPT^{rec} + FOIPL_{dren}^{rec}}{FOIIP} = \frac{FOPT^{rec} + \sum [BPORV * (BSOIL^{rec} - BSOWCR^{rec})]}{\sum [BPORV * BSOIL^{init}]}$$


Модели линейной фильтрации: расчет запасов, охваченных вытеснением

Способы выделения блоков, охваченных вытеснением:


- 1. По изменению нефтенасыщенности
- 2. По градиенту пластовых давлений
- 3. По потокам флюидов через границы блоков
- 4. По времени переноса флюидов к добывающим скважинам

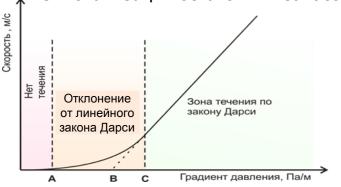
Выводы:

- 1. Наиболее "физичная" реализация в моделях линий тока
- 2. В моделях линейной фильтрации Кохв $\to 1$ и расчетные Кохв не соответствуют отборам запасов

Высокий охват вытеснением

 $\kappa \cdot H$

Плотность текущих подвижных запасов,тыс.т/га

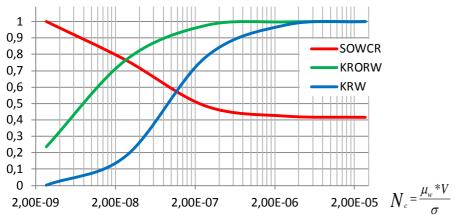

Зоны дренирования

Моделирование потоков с отклонениями от закона Дарси

Достигается соответствие охвата вытеснением и отбора запасов:

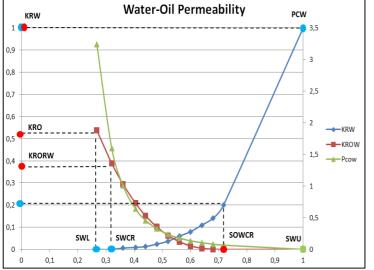
- 1. Охват вытеснением и Кохв
- 2. Добыча скважинами
- 3. Локализация остаточных запасов

Некоторые публикации:

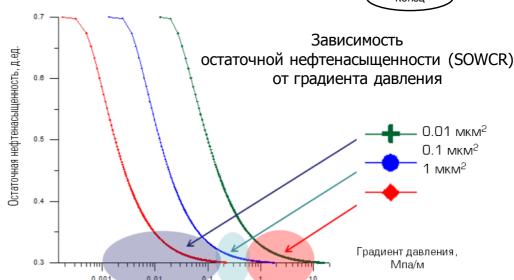

- 1. SPE 49268. S.M.P. Blom, J.Hagoort How to Include the Capillary Number in Gas Condendste Relative Permeability Functions. 1998
- 2. Черемисин Н.А., Сонич В.П., Батурин Ю.Е., Медведев Н.Я. Физические основы повышения эффективности разработки гранулярных коллекторов. Нефтяное хозяйство. N 8. 2002. C. 38-42.
- 3. В.И. Попков, С.В. Зацепина, В.П. Шакшин Использование зависимости отуосительных фазовых проницаемостей от капиллярного числа в задачах трехмерного гидродинамического моделирования залежей нефти и газа, Матем. моделирование, 2005, том 17, номер 2, 92–102
- 4.Байков В.А.,Колонских А.В., Макатров А.К., Политов М.Е., Телин А.Г., Якасов А.В. Нестационарная фильтрация в сверхнизкопроницаемых коллекторах при низких градиентах давлений. Нефтяное хозяйство. 2013. 10.c.52-56
- 5. Михайлов Н.Н., Полищук В.И., Хазигалеева З.Р. Моделирование распределения остаточной нефти в заводненных неоднородных пластах. Нефтяное хозяйство. 2014. 8.с.36-39

Симулятор / ПС	Метод расчета	Примечание			
STARS	Расчет относительных фазовых проницаемостей	?			
E300	от капиллярного числа	Для газоконденсатных систем			
MORE	Вязкость от grap P	Нет информации			
РН-КИМ	Скорость фильтрации от grap P	Ограниченные возможности			
Интермод + E100, FrontSim, PH-КИМ	Расчет относительных фазовых проницаемостей от капиллярного числа	М.б. применены любые традиционные симуляторы			

Метод динамического расчета ОФП для моделирования потоков с отклонениями от закона Дарси



Зависимость концевых точек ОФП от капиллярного числа (от скорости фильтрации)



Разработаны алгоритмы и программные модули

1. Программный модуль "Динамический расчет ОФП" (для одного временного шага)

2. Программная система "ИНТЕРМОД", в которую встроен модуль "Расчет ОФП":

- Управление n-временными шагами
- Автоматические рестарты PH-КИМ / Eclipse / FrontSim
- Чтение, расчет и записи в рестарт-файлы
- Контроль сходимости итерационного расчета ОФП
- Сопряжение секторных моделей и распараллеливание расчетов

3. Программный модуль "Расчет охвата вытеснением и локализации запасов нефти"

- Расчет текущего К_{охв} и его динамики
- Расчет карт локализации запасов
- Расчет запасов нефти, охваченных и не охваченных вытеснением
- Расчет ожидаемого КИН для текущего К_{охв}

20.09.2018

Результаты работы программного модуля "Расчет охвата вытеснением и локализации запасов нефти"

Результаты работы программного модуля:

Запасы нефти: 1. Начальные геологические

2. Текущие извлекаемые: охваченные / не охваченные воздействием

Коэффициент охвата: 1. Коэффициент охвата

2. Динамика коэффициента охвата

КИН: 1. КИН предельный (Кохв → 1.0)/ текущий

2. КИН прогнозный с учетом Кохв

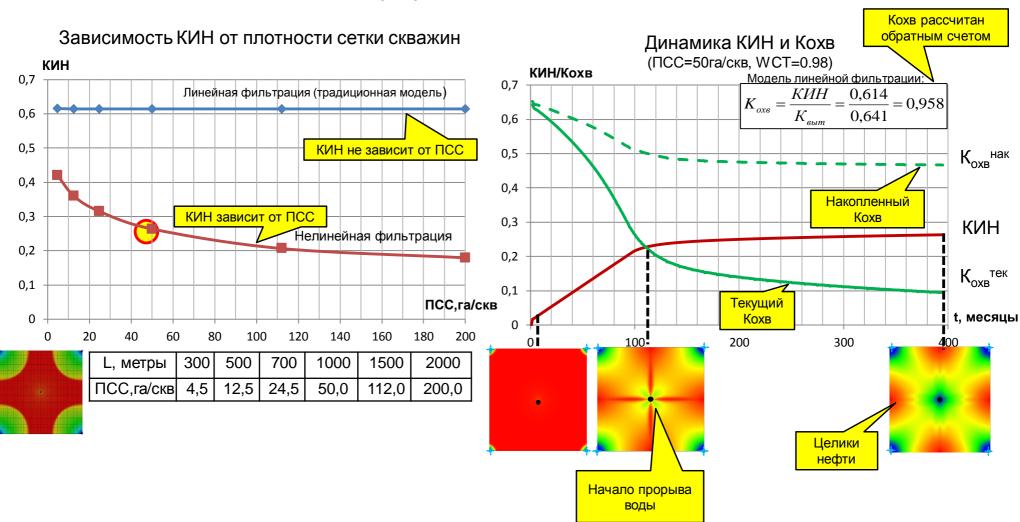
Карты: 1. Плотность начальных, текущих геологических запасов нефти

2.Плотность текущих запасов нефти, не охваченных вытеснением

3. Охват вытеснением текущих запасов нефти

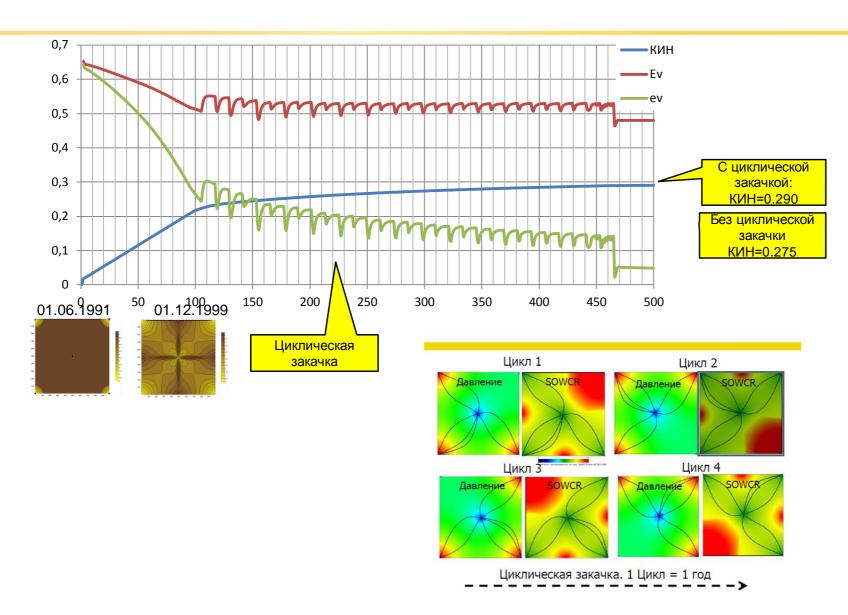
4. Вовлечение в разработку водонасыщенных зон

Расчет динамики коэффициента охвата:

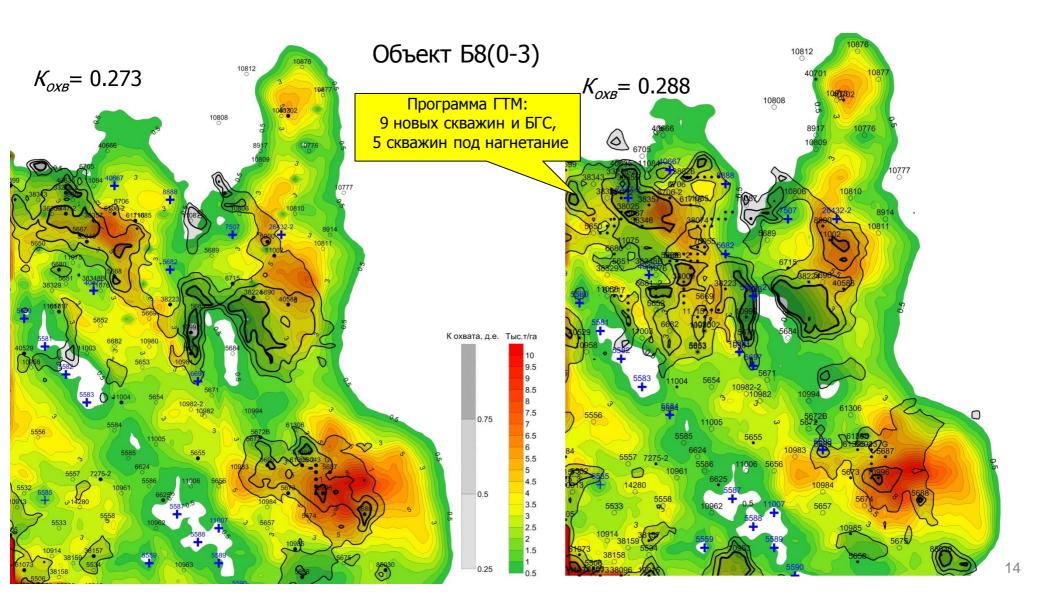

1 - 1, i= 1 - 99, j= объект: Ю1. Слои модели: Модель "нефть-вода-газ" Поворот карты по Y: 0 Способ задания плотности нефти в пластовых условиях: в каждом блоке Объемный фактор = 1.1538 Плотность нефти в стандартных условиях = 900.000 KF/M3 Плотность нефти в пластовых условиях = 780.000 KF/M3 Поровый объем 1960.200 тыс.rm3 начальные запасы воды 596.006 тыс.гм3 (пл.усл.) 1364.326 тыс.гм3 (пл.усл.) 1183.574 тыс.sм3 (ст.усл.) Начальные геологические запасы = Начальные геологические запасы = 1065.215 тыс.т Начальные геологические запасы = Начальные подвижные запасы = 682.648 тыс.т Технологический КИН (Кохв=1.исх.Квыт) = 0.6409

Nt	дата	добыто факт	ически	Текущие геологические запасы нефти 			Текущие извл.запасы нефти			Коэф.охвата извл.запасов			коэф. охвата
İ		Нефть	кин		Всего		Всего	Охват возд Не охвачено		накопл. +текущ.	текущий	кин Прогноз	водонас объемов
i	i	тыс.т	д.е.	Rm3*10**3	Sm3*10**3	тыс.т	тыс.т	тыс.т	тыс.т	д.е.	д.е.	д.е.	д.е.
	02.11.1990				1183.6	1065.2							
	01.06.1991 01.07.1991				1163.8 1161.5	1047.5 1045.4							0.3405 0.3383
	01.08.1991 01.09.1991				1159.1 1156.6	1043.2 1041.0							0.3360
	01.10.1991		0.0225		1154.2	1038.8							0.3336
	01.11.1991 01.12.1991				1151.7 1149.3	1036.6 1034.4							0.3291 0.3270
9	01.01.1992	32.8	0.0308	1322.4	1146.9	1032.2	649.9	9 250.1	399.7	0.6338	0.6152	0.4061	0.3247
	01.02.1992 01.03.1992				1144.4 1142.1	1030.0 1027.9							0.3226 0.3206
12	01.04.1992	39.3	0.0369	1314.0	1139.6	1025.7	643.	3 252.2	391.1	0.6308	0.6081	0.4042	0.3186
	01.05.1992 01.06.1992				1137.2 1134.7	1023.5 1021.3							0.3166 0.3145
15	01.07.1992	45.8	0.0430	1305.6	1132.3	1019.1	636.7	7 254.	382.4	0.6276	0.6006	0.4021	0.3126
16	01.08.1992	2 48.1	0.0451	1302.8	1129.9	1016.9	634.	5 255.1	379.4	0.6264	0.5980	0.4014	0.3107

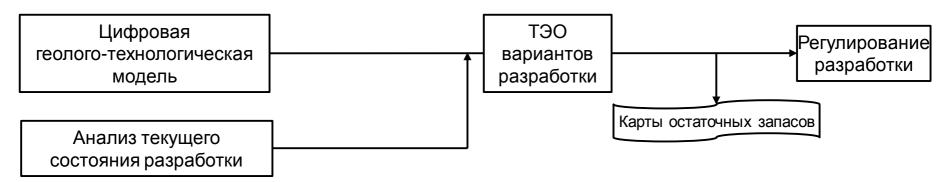
Сравнение Кохв и КИН для моделей линейной и нелинейной фильтрации

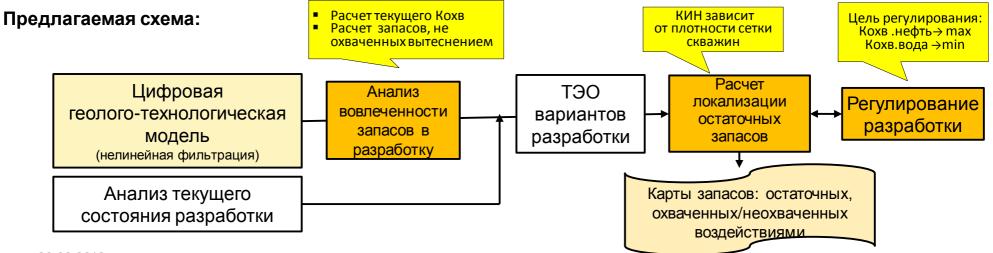


Элемент 5-ти точечной системы разработки:


Пример: Расчет текущего Кохв при циклическом заводнении

Охват воздействием от ГТМ (участок Самотлорского месторождения)




Прикладная значимость

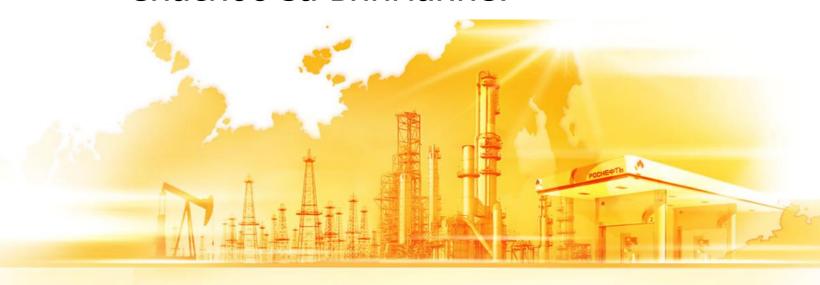
Обоснование вариантов разработки нефтегазовых месторождений

Традиционная схема:

20.09.2018

выводы

- 1. Предложена методика прямого расчета K_{oxb} основанная на применении гидродинамических моделей и потоков с отклонениями от закона Дарси
- 2. Разработаны алгоритмы и создан программный модуль. Основные результаты:
 - Расчет текущего объемного К охв и его динамики
 - Карты охвата вытеснением текущих запасов
 - Запасы, охваченные и неохваченные вытеснением
 - Плотность распределения запасов, не охваченных вытеснением
- 3. Методика и программный модуль рекомендуются:
 - для проектирования систем разработки нефтяных и нефтегазовых месторождений
 - для анализа эффективности и совершенствования реализованных систем разработки


Контактная информация

г.Тюмень, ул. Максима Горького, д.42 тел. (3452) 55-00-55

e-mail: tnnc@rosneft.ru

Спасибо за внимание!

