Логин:
Пароль:
Регистрация
Забыли свой пароль?

The effect of petrochemical reagents on the vital activity of anaerobic sulfate-reducing bacteria

UDK: 620.193:622.276.012.05
DOI: 10.24887/0028-2448-2019-1-80-82
Key words: bio-corrosion, sulfate-reducing bacteria (SRB), anaerobic bacteria, aerobic microorganisms, optional microflora
Authors: I.V. Batlutskaya (Belgorod State University, RF, Belgorod), S.A. Malyutin (Petrokhim JSC, RF, Belgorod), E.V. Karpun (Petrokhim JSC, RF, Belgorod), Yu.A. Berestovaya (Petrokhim JSC, RF, Belgorod), N.N. Novoseltseva (Petrokhim JSC, RF, Belgorod)

Anaerobic sulfate-reducing bacteria (SRB) make a special contribution to the bio-corrosion of oilfield equipment. A significant number of studies in petrochemistry are aimed at finding effective bactericides with respect to SRB and substances potentially improving complex anticorrosive compositions. Carrying out work in this direction, it seemed expedient to study the effect on the viability of the SRB of substances and reagents that are widely used in oil production. Conventionally, substances and reagents are divided into groups: bactericides, surface-active substances (surfactants), other reagents. In the experiments, the collection strain B-1799 Desulfovibrio desulfuricans was used as a test culture, providing 1360–1640 mg/l of hydrogen sulfide in 6–8 days of fermentation.

It has been established that among of the known bactericides only hydroxylamine hydrochloride suppresses CRP during the first hours of contact. The effect of formalin and hydrogen peroxide appears only after a few days. Other bactericides, as well as surfactants of various classes, do not affect the activity of SRB. The established fact is the suppression of the activity of SRB by extraneous aerobic microorganisms, which in these conditions manifest themselves as an optional microflora. Such a phenomenon was observed both when a specially grown aerobic fungal or bacterial culture was introduced into the medium with SRB, and a consortium of microorganisms spontaneously present in petrochemical reagents. In this regard, it can be assumed that the initial high microbiological purity of petrochemical reagents is not an important qualitative indicator, unless it determines the conditions and shelf life. On the contrary, with high contamination of the reagents used in the presence of SRB, the activity of bacteria and the synthesis of hydrogen sulfide are suppressed.

Anaerobic sulfate-reducing bacteria (SRB) make a special contribution to the bio-corrosion of oilfield equipment. A significant number of studies in petrochemistry are aimed at finding effective bactericides with respect to SRB and substances potentially improving complex anticorrosive compositions. Carrying out work in this direction, it seemed expedient to study the effect on the viability of the SRB of substances and reagents that are widely used in oil production. Conventionally, substances and reagents are divided into groups: bactericides, surface-active substances (surfactants), other reagents. In the experiments, the collection strain B-1799 Desulfovibrio desulfuricans was used as a test culture, providing 1360–1640 mg/l of hydrogen sulfide in 6–8 days of fermentation.

It has been established that among of the known bactericides only hydroxylamine hydrochloride suppresses CRP during the first hours of contact. The effect of formalin and hydrogen peroxide appears only after a few days. Other bactericides, as well as surfactants of various classes, do not affect the activity of SRB. The established fact is the suppression of the activity of SRB by extraneous aerobic microorganisms, which in these conditions manifest themselves as an optional microflora. Such a phenomenon was observed both when a specially grown aerobic fungal or bacterial culture was introduced into the medium with SRB, and a consortium of microorganisms spontaneously present in petrochemical reagents. In this regard, it can be assumed that the initial high microbiological purity of petrochemical reagents is not an important qualitative indicator, unless it determines the conditions and shelf life. On the contrary, with high contamination of the reagents used in the presence of SRB, the activity of bacteria and the synthesis of hydrogen sulfide are suppressed.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Press Releases

16.07.2019
08.07.2019
04.07.2019
SPE 2019
ТАТАРСТАНСКИЙ НЕФТЕГАЗОХИМИЧЕСКИЙ ФОРУМ