Methods of oil-contaminated soils diagnostic

UDK: 502.55:622.276+631.472.74
DOI: 10.24887/0028-2448-2018-8-106-109
Key words: oil, contamination, analytical and biological methods, diagnostics
Authors: I.А. Degtyareva (Tatar Research Institute for Agricultural Chemistry and Soil Science, RF, Kazan), I.А. Shaydullina (TatNIPIneft, RF, Bugulma), А.Ya. Davletshina (Tatar Research Institute for Agricultural Chemistry and Soil Science, RF, Kazan), T.Yu. Motina1 (Tatar Research Institute for Agricultural Chemistry and Soil Science, RF, Kazan), I.А. Yapparov (Tatar Research Institute for Agricultural Chemistry and Soil Science, RF, Kazan)

Assessment of the soil cover, particularly, determination of pollutant concentrations and analysis of biotic community, is vital in case of soil contamination with oil and petroleum products. For extensive and reliable characterization of the contaminated soil, various diagnostic methods are available. A number of regulatory documents are recommended depending on nature, and intensity of pollution, as well as soil exploitation purposes. Various analytical methods are used worldwide for determination of total content of hydrocarbons. These are gravimetry, fluorescence (luminescence) techniques, infrared spectroscopy and chromatography (gas, high-performance liquid and thin-layer chromatography). Analytical methods rely on different measurement principles and models systems, and use various dimensions. This makes comparative analysis of the data obtained using different methods rather challenging. Biological methods reveal soil conditions, enable tracing any negative processes at early stages, and exhibit high sensitivity and responsiveness to external effects. Oil contamination affects primarily biological parameters: aggregate number of microorganisms, their qualitative composition, structure of microbiocenosis, intensity of biological processes and activity of soil enzymes. Of the various biotest batteries used to assess the condition of contaminated soil, the most common are biotesting (zoo- and phytotoxicity), determination of the intensity of soil respiration, enzyme activity, amount of microorganisms of various physiological groups and so on. Biological activity of soil is closely related to physical and chemical properties, such as humus conditions, structure, acid-base conditions, reduction-oxidation potential etc. The issue of the development of optimum methods for determination and identification of oil and petroleum products in soil remains undecided. Given the fact that contamination with oil results in significant, predominantly unfavorable changes in soil ecosystems, diagnostics of such problems requires integration of available methods to meet the requirements of standards pertaining to biological remediation and allowable concentrations of petroleum contaminants.

References

1. Degtyareva I.A., Yapparov I.A., Yapparov A.Kh. et al., Creation and application of biofertilizers based on the effective consortium destructor microorganisms for remediation of contaminated soils of the Republic of Tatarstan (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 5, pp. 100–103.

2. Ibragimov N.G., Gareev R.M., Ismagilov I.F. et al., Regulatory support for reclamation of disturbed and oil-contaminated soils in Tatneft PJSC assets (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 5, pp. 74–77.

3. Dorozhkina O.V., Shilin S.A., Tikhonova I.O., Sravnenie analiticheskikh metodov opredeleniya nefteproduktov v gorodskikh stochnykh vodakh (Comparison of analytical methods for determining petroleum products in urban wastewater), Moscow: Publ. of D. Mendeleev University of Chemical Technology of Russia, 2013, 56 p.

4. Okolelova A.A., Rakhimova N.A., Merzlyakova A.S. et al., Determination of oil content in soil instrumental and ir spectroscopic techniques (In Russ.), Fundamental'nye issledovaniya, 2014, no. 5–1, pp. 89–92.

5. Mukhin V.V., Opredelenie soderzhaniya nefteproduktov v pochvakh metodami IK-spektrometrii i fluorimetrii (Determination of oil content in soils by IR spectrometry and fluorimetry), Collected papers “Molodaya neft'” (Young oil), Proceedings of II All-Russian Youth Scientific and Technical Conference of Oil and Gas Industry, Krasnoyarsk, 17–19 May 2015, Krasnoyarsk, 2015, pp. 159–163.

6. Mayachkina N.V., Chugunova M.I., Peculiarities of soil biotests to evaluate soil ecotoxicity (In Russ.), Vestnik Nizhegorodskogo universiteta, 2009, no. 1, pp. 84–93.

7. Kireeva N.A., Markarova M.Yu., Shchemelinina T.N., Rafikova G.F., Enzymatic and microbiological activity oil-contaminated northern soils at different stages of their restoration (In Russ.), Vestnik Bashkirskogo universiteta, 2006, V. 11, no. 4, pp. 55–60.

8. Shorina T.S., Misetov I.A., Novozhenin I.A., Ermakova O.Yu., Assessment of phytotoxicity of chernozem in the southern Orenburg region under different doses of oil pollution (in Russ.), Vestnik Orenburgskogo gosudarstvennogo universiteta, 2011, no. 12 (131), pp. 273–275.

9. Selivanovskaya S.Yu., Latypova V.Z., Creation of a test system for assessing the toxicity of multicomponent formations (In Russ.), Ekologiya, 2004, no. 1, pp. 21–25.

10. Novoselova E.I., Ekologicheskie aspekty transformatsii fermentativnogo pula pochvy pri neftyanom zagryaznenii i rekul'tivatsii (Environmental aspects of the transformation of the soil enzymatic pool at oil contamination and remediation): thesis of doctor of biological science, Ufa, 2007.

11. Margesin R., Zimmerbauer A., Schinner F., Soil lipase – a useful indicator of oil bioremediation, Biotechnology Techniques, 1999, V. 13, pp. 859–863.

12. Vershinin A.A., Petrov A.M., Yuranets-Luzhaeva R.Ch. et al., The coefficient of microbial respiration of various types of soils under conditions of oil pollution (In Russ.), Vestnik Kazanskogo tekhnologicheskogo universiteta, 2017, V. 20, no. 4, pp. 103–106.

13. Rogozina E.A., Kalimullina G.K., The balance aspect and dynamics of utilizing the soil oil pollution by microorganisms (In Russ.), Neftegazovaya geologiya. Teoriya i praktika, 2009, V. 4, no. 2, URL: http://www.ngtp.ru/7/19_2009.pdf

14. Kolesnikov S.I., Tatosyan M.L., Aznaur'yan D.K., Change in fermentative activity of ordinary chernozem during oil and oil products contamination in model experiments (In Russ.), Doklady Rossiyskoy akademii sel'skokhozyaystvennykh nauk, 2007, no. 5, pp. 32–34.

15. Tazetdinova D.I., Tukhbatova R.I., Akhmetova A.I., Mikroorganizmy antropogenno narushennykh pochv Respubliki Tatarstan (Microorganisms of anthropogenically disturbed soils of the Republic of Tatarstan), Collected papers “Aktual'nye aspekty sovremennoy mikrobiologii” (Actual aspects of modern microbiology), Proceedings of III International Youth School-Conference, Moscow, 22–23 November 2007, Moscow, 2007, pp. 106–107.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .