Modernization and development of oil pipeline systems to increase the volume of oil pumping or the redistribution of its delivery volumes requires considerable material resources and time. The article considers the issues of optimizing the parameters of projects for reconstruction and development of an oil pipeline system of arbitrary configuration for the task of increasing the volumes of delivery and receipt of products. As development of the oil pipeline system options for building pipelines, jumper between pipelines and oil pumping stations are considered. It is necessary to find a variant of the development of the oil pipeline system or several systems up to the specified parameters, i.e. determine the number of new pump stations and their construction sites, the number, location and length of new pipelines, the number and location of new jumpers. As a selection criterion, a dependence was used that takes into account operating costs, design and construction costs, taking into account discounting. Since for each development option it is necessary to determine the optimal costs of operation, it is necessary to simultaneously solve the problem of optimal investment in capital construction and the task of optimal operation of the chosen option.

At the decision the task is divided into definition of optimum streams and a choice of optimum parameters for realization of these streams. The mathematical model of the oil pipeline system is represented by an oriented graph, where the arcs are the objects of the system, and the vertices are the places of their connection. To solve the problem of distribution of optimal flows, a genetic algorithm is used, and to solve the problem of optimal operation, the dynamic programming algorithm. Based on the above model and algorithms for solving the problem of optimizing the parameters of reconstruction and development projects and algorithms for optimizing the operating mode of the oil pipeline system, the GRANS-M software complex was developed. The software complex was put into commercial operation.

References

1. Korneenko V.P., Metody optimizatsii (Optimization methods), Moscow: Vysshaya shkola Publ., 2007, 664 p.

2. Shammazov A.M., Kozachuk B.A., Soshchenko A.E. et al., Optimization of the pipeline system of arbitrary configuration (In Russ.), Transport i khranenie nefteproduktov i uglevodorodnogo syr'ya, 2013, no. 4, pp. 76–80.

3. Certificate of official registration of the computer program no. 2011618422, Modifitsirovannyy programmnyy kompleks «GRANS» s dopolnitel'nym modulem dlya optimizatsii proektov razvitiya nefteprovodnykh sistem i opredeleniya rezhima ikh ekspluatatsii (Modified software complex "GRANS" with an additional module for optimizing projects for the development of oil pipeline systems and determining the mode of their operation), Authors: Shammazov A.M. et al., Moscow: Rospatent, 2011.Modernization and development of oil pipeline systems to increase the volume of oil pumping or the redistribution of its delivery volumes requires considerable material resources and time. The article considers the issues of optimizing the parameters of projects for reconstruction and development of an oil pipeline system of arbitrary configuration for the task of increasing the volumes of delivery and receipt of products. As development of the oil pipeline system options for building pipelines, jumper between pipelines and oil pumping stations are considered. It is necessary to find a variant of the development of the oil pipeline system or several systems up to the specified parameters, i.e. determine the number of new pump stations and their construction sites, the number, location and length of new pipelines, the number and location of new jumpers. As a selection criterion, a dependence was used that takes into account operating costs, design and construction costs, taking into account discounting. Since for each development option it is necessary to determine the optimal costs of operation, it is necessary to simultaneously solve the problem of optimal investment in capital construction and the task of optimal operation of the chosen option.

At the decision the task is divided into definition of optimum streams and a choice of optimum parameters for realization of these streams. The mathematical model of the oil pipeline system is represented by an oriented graph, where the arcs are the objects of the system, and the vertices are the places of their connection. To solve the problem of distribution of optimal flows, a genetic algorithm is used, and to solve the problem of optimal operation, the dynamic programming algorithm. Based on the above model and algorithms for solving the problem of optimizing the parameters of reconstruction and development projects and algorithms for optimizing the operating mode of the oil pipeline system, the GRANS-M software complex was developed. The software complex was put into commercial operation.

References

1. Korneenko V.P., Metody optimizatsii (Optimization methods), Moscow: Vysshaya shkola Publ., 2007, 664 p.

2. Shammazov A.M., Kozachuk B.A., Soshchenko A.E. et al., Optimization of the pipeline system of arbitrary configuration (In Russ.), Transport i khranenie nefteproduktov i uglevodorodnogo syr'ya, 2013, no. 4, pp. 76–80.

3. Certificate of official registration of the computer program no. 2011618422, Modifitsirovannyy programmnyy kompleks «GRANS» s dopolnitel'nym modulem dlya optimizatsii proektov razvitiya nefteprovodnykh sistem i opredeleniya rezhima ikh ekspluatatsii (Modified software complex "GRANS" with an additional module for optimizing projects for the development of oil pipeline systems and determining the mode of their operation), Authors: Shammazov A.M. et al., Moscow: Rospatent, 2011.