Логин:
Пароль:
Регистрация
Забыли свой пароль?

Problems in WAG implementation and prospects of their solutions

Authors: A.N. Drozdov (Gubkin Russian State University of Oil and Gas, RF, Moscow)

Key words: WAG process, enhanced oil recovery, pump, compressor, pump-ejecting system.

WAG is an effective method to enhance oil recovery. However, widespread use of WAG in our environment is difficult to provide with known technologies. Therefore, the creation of an effective, reliable and easy to maintain equipment and technology for the preparation and injection water-gas mixture into the injection wells is an urgent problem for Russian oil production. Good prospects in its decision has WAG with using of pump-ejecting systems which allow to prepare in the surface the water-gas mixture and inject it into the reservoir in a wide range of flow rates and pressures by equipment, which can be successfully used in field conditions.
References
1. Tsyganova E.F., Cheremisin N.A., Gordeev A.O., Neftepromyslovoe delo,
2014, no. 2, pp. 5–10.
2. Zemtsov Yu.V., Timchuk A.S., Baranov A.V., Gordeev A.S., Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 2013, no. 10,
pp. 49–55.
3. Luk'yanov Yu.V., Shuvalov A.V., Nasretdinov R.G. et al., Neftyanoe
khozyaystvo – Oil Industry, 2009, no. 3, pp. 44–47.
4. Chubanov O.V., Kharlanov S.A., Nurgaliev R.G., Territoriya Neftegaz, 2008,
no. 9, pp. 42–48.
5. Karpov V.B., Kokorev V.I., Gas utilizing methods – new technology of oil recovery factor improvement, SPE 117373, 2008.
6. Kokorev V.I., Neftepromyslovoe delo, 2009, no. 11, pp. 24–27.
7. Shevchenko A.K., Chizhov S.I., Tarasov A.V., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 10, pp. 100–102.
8. Drozdov A.N., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 9,
pp. 108–111.
9. Lyamaev B.F., Gidrostruynye nasosy i ustanovki (Hydro-jet pumps and units),
Leningrad: Mashinostroenie Publ., 1988, 256 p.
10. Donets K.G., Gidroprovodnye struynye kompressornye ustanovki (Hydraulic
jet compressor units), Moscow: Nedra Publ., 1990, 174 p.
11. Krasil'nikov I.A., Razrabotka metodiki rascheta kharakteristik zhidkostnogazovykh ezhektorov dlya ekspluatatsii skvazhin i vodogazovogo
vozdeystviya na plast s ispol'zovaniem nasosno-ezhektornykh sistem (Development
of methodology for calculation of liquid-gas ejectors for the wells operation
and water-gas stimulation using ejector-pump systems): thesis of candidate
of technical science, Moscow, 2010.
12. Drozdov A.N., Razrabotka metodiki rascheta kharakteristiki pogruzhnogo
tsentrobezhnogo nasosa pri ekspluatatsii skvazhin s nizkimi davleniyami u
vkhoda v nasos (Development of methodology for calculating the characteristics
of submersible centrifugal pump during operation of wells with low
pressure at the entrance to the pump): thesis of candidate of technical science,
Moscow, 1982.

Key words: WAG process, enhanced oil recovery, pump, compressor, pump-ejecting system.

WAG is an effective method to enhance oil recovery. However, widespread use of WAG in our environment is difficult to provide with known technologies. Therefore, the creation of an effective, reliable and easy to maintain equipment and technology for the preparation and injection water-gas mixture into the injection wells is an urgent problem for Russian oil production. Good prospects in its decision has WAG with using of pump-ejecting systems which allow to prepare in the surface the water-gas mixture and inject it into the reservoir in a wide range of flow rates and pressures by equipment, which can be successfully used in field conditions.
References
1. Tsyganova E.F., Cheremisin N.A., Gordeev A.O., Neftepromyslovoe delo,
2014, no. 2, pp. 5–10.
2. Zemtsov Yu.V., Timchuk A.S., Baranov A.V., Gordeev A.S., Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 2013, no. 10,
pp. 49–55.
3. Luk'yanov Yu.V., Shuvalov A.V., Nasretdinov R.G. et al., Neftyanoe
khozyaystvo – Oil Industry, 2009, no. 3, pp. 44–47.
4. Chubanov O.V., Kharlanov S.A., Nurgaliev R.G., Territoriya Neftegaz, 2008,
no. 9, pp. 42–48.
5. Karpov V.B., Kokorev V.I., Gas utilizing methods – new technology of oil recovery factor improvement, SPE 117373, 2008.
6. Kokorev V.I., Neftepromyslovoe delo, 2009, no. 11, pp. 24–27.
7. Shevchenko A.K., Chizhov S.I., Tarasov A.V., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 10, pp. 100–102.
8. Drozdov A.N., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 9,
pp. 108–111.
9. Lyamaev B.F., Gidrostruynye nasosy i ustanovki (Hydro-jet pumps and units),
Leningrad: Mashinostroenie Publ., 1988, 256 p.
10. Donets K.G., Gidroprovodnye struynye kompressornye ustanovki (Hydraulic
jet compressor units), Moscow: Nedra Publ., 1990, 174 p.
11. Krasil'nikov I.A., Razrabotka metodiki rascheta kharakteristik zhidkostnogazovykh ezhektorov dlya ekspluatatsii skvazhin i vodogazovogo
vozdeystviya na plast s ispol'zovaniem nasosno-ezhektornykh sistem (Development
of methodology for calculation of liquid-gas ejectors for the wells operation
and water-gas stimulation using ejector-pump systems): thesis of candidate
of technical science, Moscow, 2010.
12. Drozdov A.N., Razrabotka metodiki rascheta kharakteristiki pogruzhnogo
tsentrobezhnogo nasosa pri ekspluatatsii skvazhin s nizkimi davleniyami u
vkhoda v nasos (Development of methodology for calculating the characteristics
of submersible centrifugal pump during operation of wells with low
pressure at the entrance to the pump): thesis of candidate of technical science,
Moscow, 1982.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

24.09.2020
09.09.2020
03.09.2020