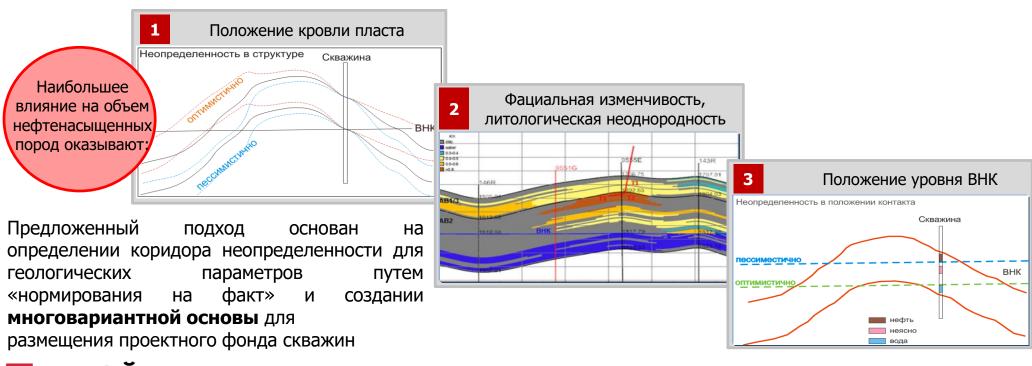


ОЦЕНКА УВЕРЕННОСТИ ЗАПАСОВ НА ОСНОВЕ ВЕРОЯТНОСТНОГО ПОДХОДА С ЦЕЛЬЮ ОПТИМИЗАЦИИ РАЗМЕЩЕНИЯ ПРОЕКТНОГО ФОНДА (на примере Восточной залежи объекта IOB_1 Нонг-Еганского месторождения)

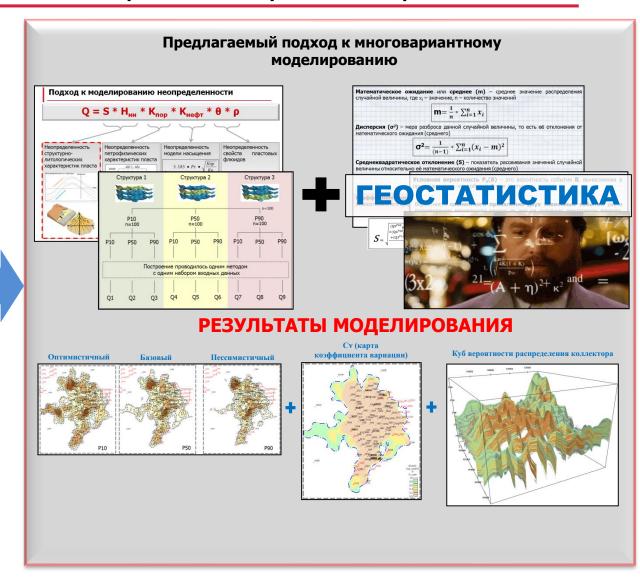
Игорь Акчурин, инженер 2-ой категории Дмитрий Буханов, главный специалист Светлана Эльзенбах, инженер 1-ой категории

Цели и задачи

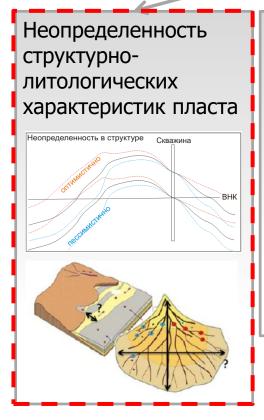

Выявление и оценка на основе вероятностного подхода наиболее перспективных зон для оптимизации размещения проектного фонда скважин и выработки остаточных запасов

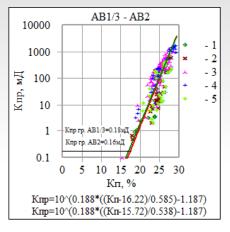
- Построение многовариантной геологической модели
- Разработка методики построения 2D карты уверенности запасов и 3D параметра распространения коллектора
- Оценка корректности предложенного подхода методом «выколотой» скважины
- Выявление наиболее перспективных зон и оптимизация размещения проектного фонда скважин на основе полученных результатов
- Анализ степени уверенности распределения коллектора с целью планирования бурения ГС в наиболее перспективных зонах
- Экономическая оценка предложенных вариантов оптимизации размещения проектного фонда скважин

«Классический» подход к многовариантному моделированию



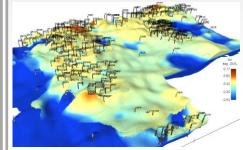
Сравнение подходов к многовариантному моделированию





Теоретические основы расчета многовариантной модели

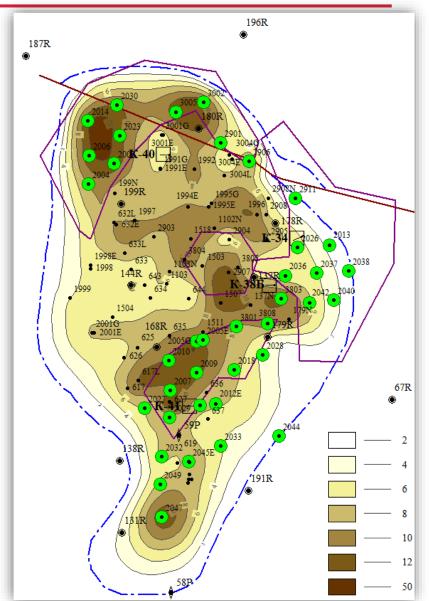
$$Q = S * H_{HH} * K_{\Pi O P} * K_{He \Phi T} * \theta * \rho$$



Неопределенность петрофизических характеристик пласта

Неопределенность модели насыщения

$$J = \frac{3.183 \bullet Pc \bullet \sqrt{\frac{Knp}{Kn}}}{\gamma \bullet \cos\theta}$$

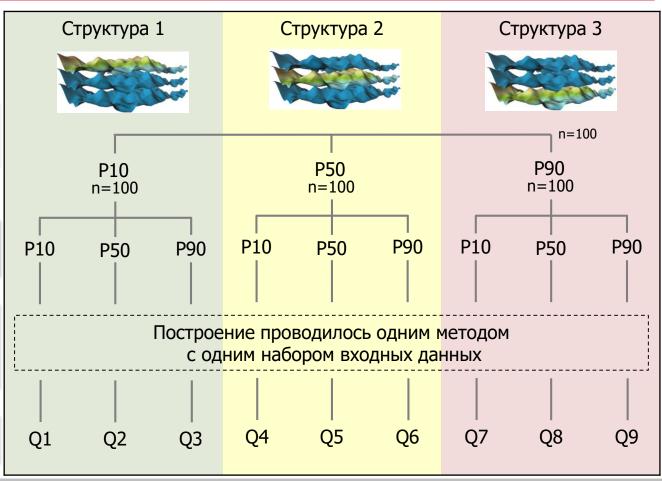

Неопределенность свойств пластовых флюидов

Нонг-Еганское месторождение. Объект IOB_1 . Восточная залежь. Обоснование выбора объекта

Объект пристального внимания последних лет:

- ✓ С 2014 года пробурено порядка **40%** фонда скважин
- ✓ Низкая степень подтверждаемости эффективных толщин по данным бурения последних лет
- ✓ Наличие недоизученных зон в краевых частях залежи

Использование сейсмических данных при построении 3D ГМ



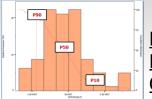


Схема расчетов многовариантной модели

Подсчет запасов

Границы оценки запасов

<u>Пессимистичный (**P90**)</u> – оцененная величина запасов подтверждается с вероятностью 0.9 <u>Базовый (**P50**)</u> – оцененная величина запасов подтверждается с вероятностью 0.5 <u>Оптимистичный (**P10**)</u> – оцененная величина запасов подтверждается с вероятностью 0.1

Основные понятия геостатистики

Математическое ожидание или **среднее (m)** – среднее значение распределения случайной величины; где x_i – значение, n – количество значений

$$\mathbf{m} = \frac{1}{n} * \sum_{i=1}^{n} x_i$$

Дисперсия (σ^2) — мера разброса данной случайной величины, то есть её отклонения от математического ожидания (среднего)

$$\mathbf{\sigma}^2 = \frac{1}{(n-1)} * \sum_{i=1}^{n} (x_i - m)^2$$

Среднеквадратическое отклонение (S) – показатель рассеивания значений случайной величины относительно её математического ожидания (среднего)

$$S=\sqrt{\sigma^2}$$

Коэффициент вариации (Сv) показывает разброс случайной величины параметра относительно его среднего значения

$$\mathbf{C}_{\nu} = \frac{S}{m}$$

Критерии оценки уверенности запасов

$$S = \sqrt{\frac{(Q_{P90}^{P90} - Q_{5}^{P50}_{P50})^{2} + (Q_{8}^{P90} - Q_{5}^{P50}_{P50})^{2} + (Q_{900}^{P90} - Q_{5}^{P50}_{P50})^{2} + (Q_{900}^{P90} - Q_{5}^{P50}_{P50})^{2} + (Q_{900}^{P50} - Q_{5}$$

Чем **меньше** значение <u>коэффициента вариации</u>, тем **более точной** является оценка запасов

Теоретические основы построения куба вероятности распределения коллектора

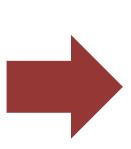
Условная вероятность $P_A(B)$ — это вероятность события B, вычисленная в предположении, что событие A уже наступило

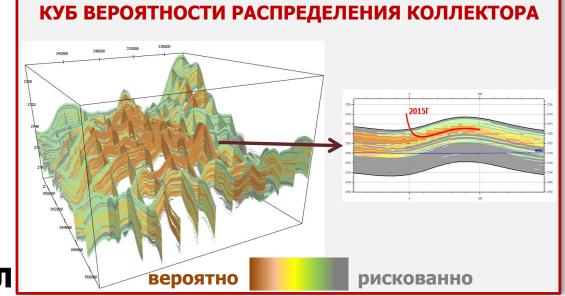
Вероятность совместного проявления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие уже произошло

$$P(AB)=P(A) * PA(B) = P(B) * PB(A)$$

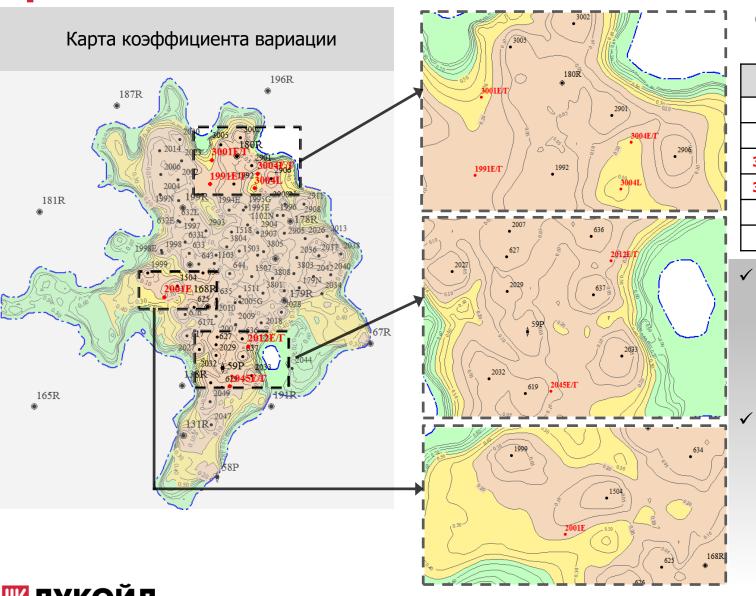
Вероятность несовместимых событий

$$P(A+B)=P(A)+P(B)$$


Построение куба вероятности распределения коллектора



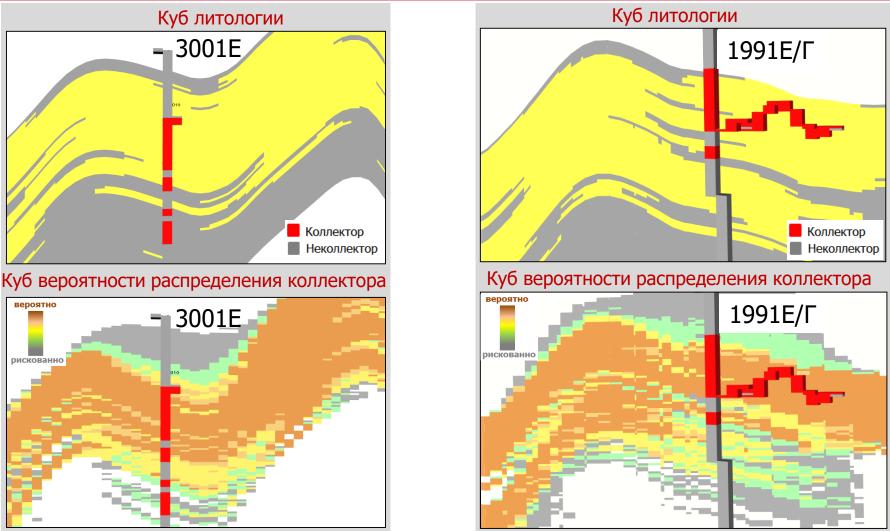
РАСЧЕТ РЕЗУЛЬТИРУЮЩЕГО



Позволяет:

- ✓ Предполагать степень надежности проницаемых пропластков по отношению друг к другу в разрезе продуктивного пласта
- ✓ Прогнозировать изменчивость песчаных тел по латерали

Оценка подтверждаемости ГМ с использованием метода «выколотой» скважины

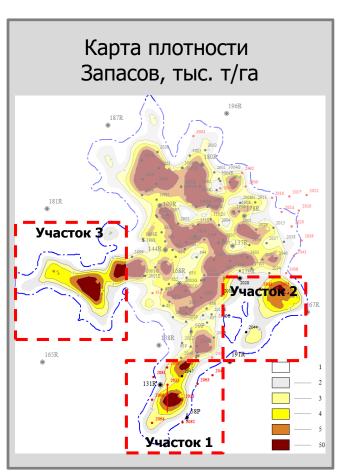


Скважины, исключенные из построений

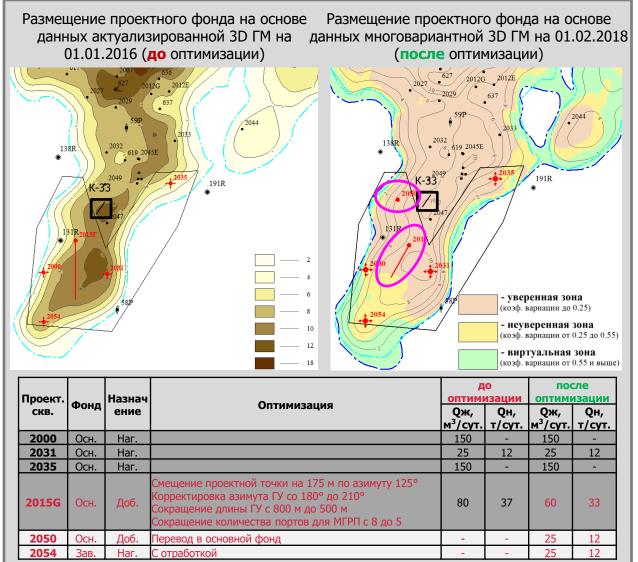
№ скв.	Ннн план, м	Ннн факт, м	Расхож- дение		
1991E/G	7.0	7.3	+0.3		
2001E/G	5.3	5.9	+0.6		
3001E/G	11.4	6	-5.4		
3004E/G	7.7	4.4	-3.2		
2012E/G	5.4	6.0	-0.7		
2045E/G	8.1	9.5	-1.4		

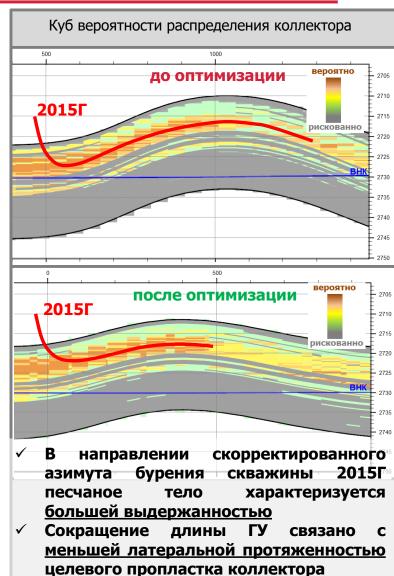
- Скважины 3001E и 3004E имеют существенные расхождения между фактическими и плановыми показателями
- Карта коэффициента вариации показывает что скважины 3001E и 3004E находятся в более рискованной зоне, относительно скважин по которым расхождение толщин минимально

Анализ 3D параметра вероятности распространения коллектора, построенного по методу «выколотой» скважины


Высокая подтверждаемость прогноза распространения коллекторов в сравнении со скважинной кривой литологии

Выявление перспективных зон



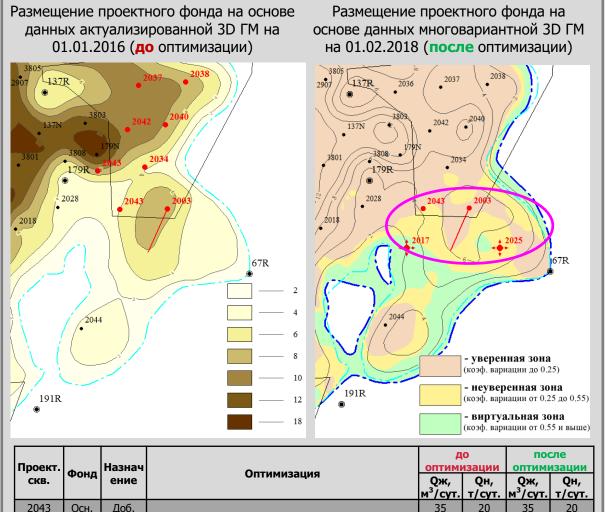


Комплексный анализ представленных параметров позволил выделить три наиболее перспективных зоны

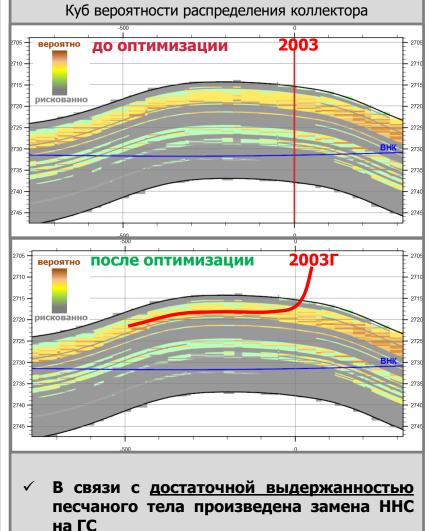
Участок 1. Оптимизация размещения проектного фонда скважин

Участок 2. Оптимизация размещения проектного фонда скважин

35


150

20


80

30

120

		П	2710 -	
		П	2/10 =	
		П	2715	
		П	2720 -	þ
		П	2725	
a 25)		П	2730	
) на 25 до 0.55)		П	2735	
она		П	2740	
55 и выше)		П	2745	
сле	11	П		
<u>изации</u> Qн,	Н	П		
т/сут.		П	✓	/
20	1	П		
50	Ш	П		
18	Ш	П		
-	Л	П		

Осн.

Осн.

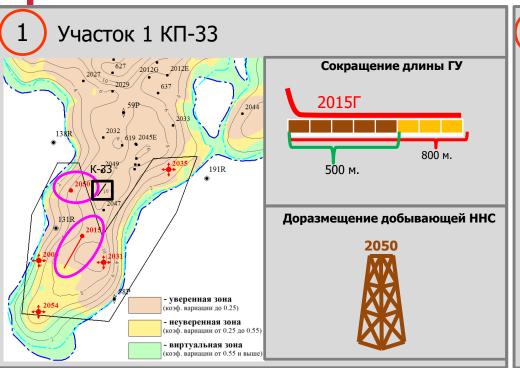
Зав.

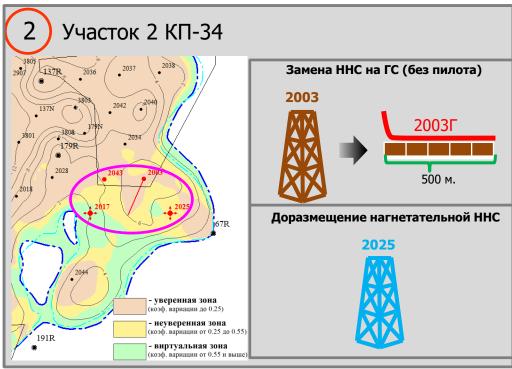
Доб.

Наг.

Наг.

Ваменить ННС на ГС (без пилота)


Сотработкой


2003

2025

2017

Экономическая оценка эффективности

	Ед. изм.	Объекты разработки				
Папамотп		Объект ЮВ₁ Восточная залежь				
Параметр		Варианты				
		1	2	Разница	%	
Объем добычи нефти за 30 лет	тыс. т	1 111.6	1 191.1	79.5	+ 7.2 %	
Эксплуатационное бурение	тыс. м	31.8	38.9	7.1	+22.3 %	
Чистый дисконтированный доход за рентабельный период (ЧДД 15 %)	млн. долл.	18.0	18.2	+ 0.2	+ 1.1 %	

Выводы

Применение разработанной методики актуально:

- 1 На неразбуренных залежах (участках), характеризующихся низкой степенью изученности
- 2 В приконтурных частях залежей, находящихся в разработке
- При неоднозначности геологической концепции объекта исследования
- 4 При существенной литологической изменчивости объекта исследования

Предложенная методика позволяет:

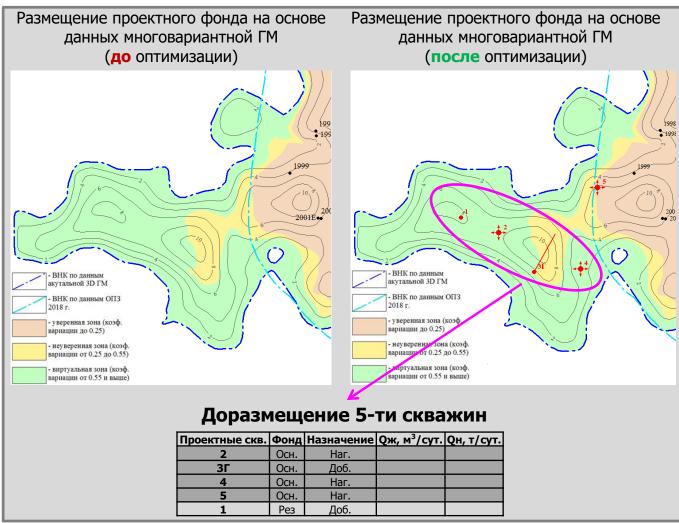
- 1 Выявлять и ранжировать участки по степени перспективности
- 2 Осуществлять выбор очередности бурения проектных скважин и кустовых площадок
- 3 Проектировать оптимальное размещение ГС, в том числе с целью уменьшения доли пилотных стволов

Результатом использования данного подхода является **минимизация рисков** при планировании эксплуатационного бурения на различных по сложности объектах разработки.

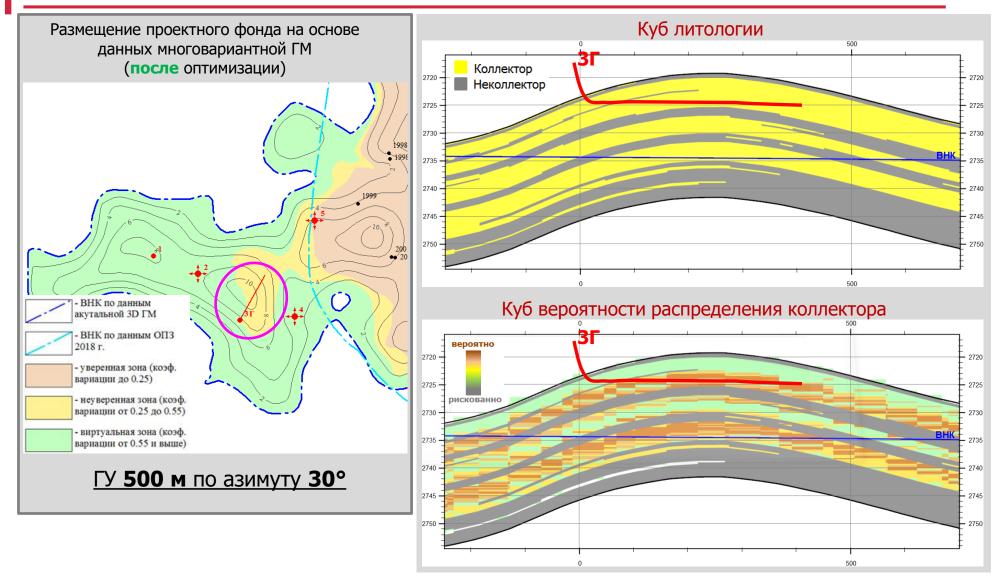
Предложенная методика может быть внедрена в алгоритм работы с постоянно-действующими геолого-гидродинамическими моделями (ПДГГМ), а также интегрированными моделями.

Всегда в движении!

Результаты расчета многовариантной модели

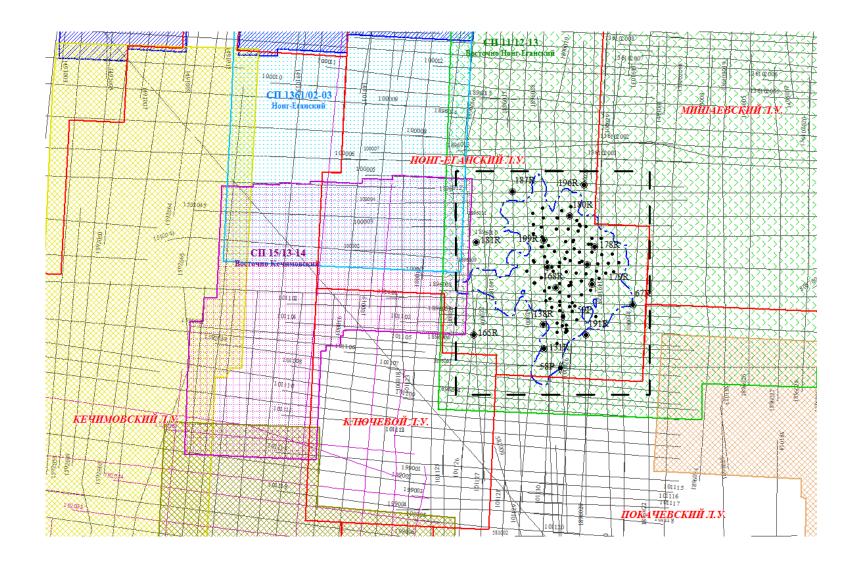

СЦЕНАРИИ ПО СТРУКТУРЕ		P10		P50			P90			
СЦЕНАРИИ ПО ЛИТОЛОГИИ		P10	P50	P90	P10	P50	P90	P10	P50	P90
Площадь, тыс. м ²		38 901	38 131	35 710	35 122	34 718	32 128	31 881	31 941	30 559
Эфф.нн.толщина, м		6.51	6.01	5.51	6.41	6.00	5.82	6.43	6.04	5.85
Объем, тыс. м ³		253 243	229 167	196 762	225 135	208 309	186 983	204 992	192 926	178 770
Геологические запасы нефти, тыс. т		13 271	12 080	10 325	11 913	11 072	9 870	10 918	10 294	9 509
Геологические запасы нефти, тыс. т	13500.00 12500.00 11500.00 10500.00									•
Площадь, тыс. м ²	38000.00 · 36000.00 · 32000.00 · 300000.00 · 300000.00 · 300000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00 · 30000.00				•					•
Вероятность сценария		1	5	9	5	25	45	9	45	81

Участок 3. Оптимизация размещения проектного фонда скважин

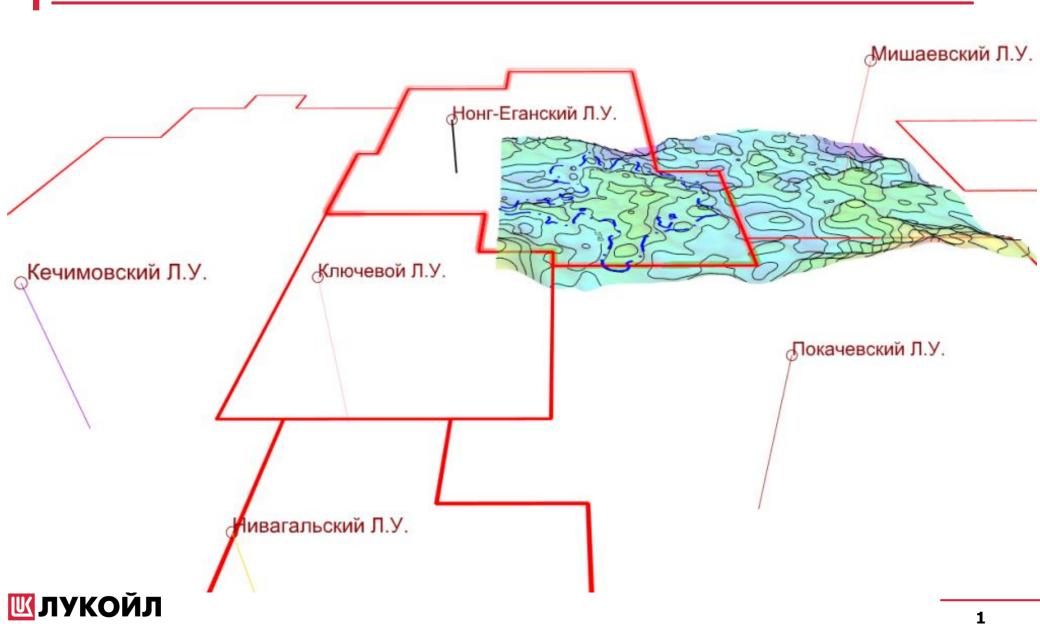


Данный участок характеризуется меньшей степенью уверенности и представлен на дальнейшую перспективу

Размещение проектной скважины 3Г



Результаты и перспективы


- Построена многовариантная модель Восточной залежи объекта ЮВ₁ Нонг-Еганского месторождения
- Разработана методика построения куба вероятности распределения коллектора
- Выявлены и проранжированы по степени перспективности три участка
- Совместно со специалистами по разработке сформированы предложения по оптимизации размещения проектного фонда скважин и произведена экономическая оценка предложенных корректировок, которая позволяет говорить об их эффективности
- Эффективность предложенной методики подтверждена методом «выколотой» скважины многовариантная модель, построенная таким образом показывает высокую степень подтверждаемости распределения коллектора

Перспективные направления развития предложенной методики

- Построение 3D параметра вероятности распределения фильтрационно-емкостных свойств
- Учет неоднозначности положения ВНК при создании многовариантной модели структурного каркаса

