

(000 «THHЦ»)

ЛОКАЛИЗАЦИЯ ТЕКУЩИХ ЗАПАСОВ НЕФТИ НА ГИДРОДИНАМИЧЕСКИХ МОДЕЛЯХ НЕРАВНОВЕСНОЙ НЕЛИНЕЙНОЙ ФИЛЬТРАЦИИ

Н.А. Черемисин, С.В. Костюченко

Уфа, 15 мая 2018

Содержание доклада

- 🛛 Актуальность проблемы
- 🗅 Связь КИН с плотностью сетки скважин и темпом отбора
- Неравновесная нелинейная фильтрация. Обобщение теоретических, экспериментальных и промысловых данных
- Поделирование процессов нелинейной фильтрации методом динамических ОФП
- Апробация локализации запасов на моделях нелинейной неравновесной фильтрации
- 🗆 Выводы

- В настоящее время большинство разрабатываемых месторождений компании «Роснефть» находятся на поздних стадиях разработки (60%, текущие запасы нефти более 5000 млн. т)
- Эти запасы характеризуются низкими темпами отбора и недостижением проектной нефтеотдачи
- Существует технологическая возможность доизвлечения таких запасов, однако эффективность этих технологий зависит от знания структуры запасов остаточной нефти.
- Проблема адекватной локализации подвижных запасов не может быть решена в рамках «линейных» моделей, в которых остаточная нефтенасыщенность задается статическим распределением в объеме объекта разработки и не зависит от систем разработки.
- Опыт разработки огромного числа месторождений показывает, что технологический КИН существенно зависит от плотности сетки скважин и темпов отбора.

Чему нет объяснения в рамках линейного закона Дарси. Связь КИН с плотностью сетки скважин

Зависимость КИН от удельной плотности сетки скважин для различных объектов разработки

Зависимость КИН от плотности сетки скважин и гидропроводности пласта

Месторождение(пласт)	Удельная плотность сетки скважин, га/скв						
	2	10	20	30	40	100	
Восточный Техас							
США	0.8	0.78	0.76	0.73	0.71	0.59	
(вудбайн)							
Бавлинское	0.74	0.72	0.69	0.67	0.65	0.52	
Туймазинское (Д11)	0.69	0.65	0.6	0.56	0.51	0.32	
Ромашкинское,							
Абдурахмановская	0.68	0.62	0.55	0.48	0.43	0.21	
площадь (Д1)							

(Щелкачев В.Н., 1974)

(Мартос В.Н., Куренков А.И., 1989, по 30 месторождениям Урало-Поволжья и Западной Сибири)

Чему нет объяснения в рамках линейного закона Дарси. Форсированный отбор.

Зависимость технологического КИН от темпа отбора и плотности сетки скважин по 189 объектам разработки

$$\begin{split} \eta &= 0.0041 \ gk_{_{np}} - 0.091 \ g\mu_{_{0}} + 31.05K_{_{11}} + 0.138h_{_{H}} - \\ &- 0.03\rho + 1.27T - 2.74S, \end{split}$$

где k_{пр} — коэффициент проницаемости; S — относительный размер водонефтяной зоны; h_µ—эффективная нефтенасыщенная мощность; µ_µ—относительная вязкость; р—плотность сетки скважин; Т—темпы отбора жидкости; К_п—коэффициент песчанистости.

М.М. Иванова, 1977

Форсированный отбор (промысловые данные, около 350 скв.)

Зависимость технологического КИН от темпа отбора жидкости по 37 участкам пластов АС, БС И ЮС

$$\mathcal{K}_{_{KUH}} = 20.25 - 1.58 \cdot \frac{\mathcal{K}_{_{RP}}^{\text{max}}}{\mathcal{K}_{_{RP}}^{\text{min}}} + 0.5\mathcal{K}_{_{H}} + 0.06q_{_{\mathcal{K}, yd.}} - 3.85\rho_{_{yd.}}$$
(1)

- где: К_{кин} коэффициент нефтеизвлечения, <u>%;</u>
 - К^{min} средняя максимальная проницаемость коллектора на участке пласта, отнесенная к 15% толщины пласта, мкм²;
 - К_н средняя минимальная проницаемость коллектора, отнесенная к 15% толщины пласта, мкм²;
 - $q_{x.yd.}$ средний удельный дебит скважин по жидкости, т/сут. м;

В.А. Мишарин, 2001

Сравнение фактического и расчетного КИН для корреляции (1)

Сонич В.П., Черемисин Н.А., 2002

Обобщенный закон Дарси, уравнения фильтрации

$$v_{\mu} = -k \frac{k_{\mu}}{\mu_{\mu}} \left(\frac{\partial p_{\mu}}{\partial x} + g \rho_{\mu} \sin \alpha \right),$$
$$v_{\sigma} = -k \frac{k_{\sigma}}{\mu_{\sigma}} \left(\frac{\partial p_{\sigma}}{\partial x} + g \rho_{\sigma} \sin \alpha \right),$$

$$\frac{\partial m_i \rho_i}{\partial t} + \frac{\partial \rho_i v_i}{\partial x} = 0.$$
$$m_i = m \cdot s_i$$

$$p_{H} - p_{G} = P_{C} = \frac{\sigma_{HG} \cdot \cos \theta}{\sqrt{k/m}} \cdot J(s),$$

Раппопорта-Лиса:

$$m\frac{\partial s}{\partial t} + v\frac{\partial F(s)}{\partial x} + \frac{\partial}{\partial x}\left\{\frac{k \cdot k_{_{H}}}{\mu_{_{H}}}F(s) \cdot \left[\frac{\partial P_{_{c}}}{\partial x} - g\Delta\rho\sin\alpha\right]\right\} = 0,$$

где $v = v_{\mu} + v_{\sigma}$,

$$F(s) = rac{k_s(s)}{k_s(s) + rac{\mu_s}{\mu_h} k_\mu(s)} - функция Бакли-Леверетта.$$
Из лекции Р.Р. Ибату разработки нефтянь

Из лекции Р.Р. Ибатуллина «Технологические процессы разработки нефтяных месторождений

Зависимость фазовых проницаемостей в процессе вытеснения нефти водой только от локальной насыщенности фильтрующихся фаз, предполагает их термодинамически- равновесное распределения в поровом пространстве, при этом капиллярные силы в достаточно малой области могут преобладать над внешним перепадом давления.

Опыты на не экстрагированном керне показали, что спонтанная капиллярная пропитка, как движущая сила перераспределения фаз, практически не проявляет себя в процессе вытеснения нефти водой.

Одним из следствий отсутствия термодинамически – равновесного распределение фаз в процессе разработки является зависимость ОФП не только от локальной насыщенности фаз, но и скорости фильтрации/градиента давления.

Капиллярная пропитка, опыты на керне

Отсутствие перераспределения нефтенасыщенности слоев по высоте от времени выдержки

А, В, С Имитация нефтенасыщенного интервала содержит: речной песок 97%мас.; глина 3%мас.; водный раствор с общей минерализацией 20 г/л.; нефть пласта AC12 Западно-камынское месторождение Коэффициент начальной нефтенасыщенности соответственно Ки/н=0,3;0,5;0,7

D Имитация водонасыщенного интервала содержит: речной песок 97%мас.; глина 3%мас.; водный раствор с общей минерализацией 20 г/л. Коэффициент начальной нефтенасыщенности Кн/н=0

(Липчинский, Андреев, Киселев, 2007)

Конечный коэффициент нефтеизвлечения при спонтанной пропитке нефтенасыщенных образцов керна водой в зависимости от времени их старения при пластовых условиях (остаточная водонасыщенность образцов 15-25%,)

(Zhou, Morrow, Shouxiang, 2000)

Зависимость содержания остаточной нефти в песчано-алевролитовых породах при ее капиллярном вытеснении под действием растворов и внешнего электрического поля

(Сонич В.П., 2003)

Остаточная нефтенасыщенность функция градиента давления *

$$K_{OH} = K_H \cdot (1 - Z) + Z \cdot \varphi \cdot K_H$$

$$Z = \frac{\int_{r_*}^{\infty} r^2 \cdot f(r) dr}{\int_{0}^{\infty} r^2 \cdot f(r) dr}.$$

$$K_{OH} = \frac{\left(1 - \varphi\right) \cdot K_{H}}{1 + \frac{K_{H}}{K_{\Pi}} \cdot \frac{K_{B} \cdot K}{\mu_{B}} |\nabla P| \cdot \theta} \cdot + \varphi \cdot K_{H},$$

где: $|\nabla P|$

 μ_{B}

модуль градиента давления, Па/м;

Кп - пористость коллектора;

- φ,θ коэффициенты, зависящие от особенностей строения пластов
- к абсолютная проницаемость коллектора, м²;
- К_В относительная фазовая проницаемость по воде в промытой зоне;

_ вязкость воды, Па·с;

- r* критический радиус пор (меньше движение отсутствует), м
- Z объемная доля пор, из которых вытиснилась нефть

Значения параметров по группам пластов

Группа пластов	φ	θ·10⁻ ^₀ , с/м
А	0,395	1,98
Б	0,413	1,43
Ю	0,390	1,94

Остаточная нефтенасыщенность как функция градиента давления*

Остаточной нефтенасыщенность как функция градиента давления и проницаемости коллектора

Градиент давления при фильтрации воды в образцах керна с остаточной нефтенасыщенностью

(пористость -0.25, начальная нефтенасыщенность-0.7)

Остаточная нефтенасыщенность в образцах керна составляла 29-30%

Средний радиус пор с капиллярно-защемленной нефтью в зависимости от градиента давления

Зависимость критического радиуса пор от градиента давления

Распределение капель остаточной нефти по размерам в зависимости от скорости вытеснения

Михайлов Н.Н., 1992

Средний радиус пор с капиллярно-защемленной нефтью в зависимостиот остаточной нефтенасыщенности (проницаемость – 100 мД, ср. радиус пор – 25 мкм)

Остаточная нефтенасыщенность как функция капиллярного числа. Лабораторные данные

Гидрофильный коллектор

Капиллярное число Черемисин, Сонич, Батурин, 1997

Динамические ОФП

Влияние ПСС и темпов отбора на нефтеотдачу

(по результатам численного нелинейного моделирования)

пласты В, однородные, проницаемость 200 мД
пласты В, неоднородные, проницаемость 75мД
пласты Ю, высоконеоднородные, проницаемость 15 мД

Характер выработки запасов в нелинейной и «линейной» моделях

16

Апробация алгоритмов и ПО, сектор 6-10 Самотлорского месторождения

Параметры

Общее количество ячеек в ГДМ 360882, средний размер ячеек 100x100x0.97

Расположение участка

 AB_{1}^{1-2} AB_1^3 AB₂₋₃ AB₄₋₅ 1662 1681 1723 1791 Средняя глубина залегания пласта в секторе Начальное насыщение н ΗВ HB В Пластовая, сводовая Тип залежи в секторе Средняя общая толщина, м 24.2 8.5 Средняя эффективная толщина в целом по пласту, м 8.5 13.9 Средняя нефтенасыщенная толщина, м 66.8 68.0 22 7.1 33.4 35.6 Пористость, % Средняя нефтенасыщенность, % 32.8 5.3 2.0 -Проницаемость, мД 9.5 27 28 28 0.34 38.4 Коэффициент песчанистости, доли ед. 41.6

Геолого-физические параметры пластов в границах сектора

Пласты

Разрез с севера на юг, насыщенность по нефти

17

-

Сектор 6-10 Самотлорского месторождения, результаты расчетов

Нефтенасыщенность 5 слоя начало разработки 1990

Нефтенасыщенность 5 слоя на 01.01.2008, нелинейная модель

Нефтенасыщенность 5 слоя на 01.01.2008, линейная модель

Запасы нефти в границах сектора 42.7 млн. тонн, отобрано по лин. модели 16.7 млн.т, по нелинейной -15.8 млн.тон, по факту на 01.01.2008 – 15.824 млн. тонн

Апробация алгоритмов и ПО, объект исследования: Северо-Хохряковское месторождение, район куста 118

ОТКРЫТО В 1976 ГОДУ ВВЕДЕНО В РАЗРАБОТКУ В 1988 ГОДУ

	ЮВ		
Параметры	р-н к.118	Пласт в целом	
Средняя глубина залегания, м	272	1	
Тип коллектора	терриге поро	эрригенный, поровый	
Тип залежи	ПС, ТиЛО		//
Средняя общая толщина, м	10.2	9.4	
ННТ, м	4.2	2.6	. (
Пористость, %	14	16	
Кнн, %	57.0	64.5	1
Кп, *10-3 мкм ²	3.0	8.7	$\langle z \rangle$
Кпесч, д.ед.	0.28	0.46	- K
Расчлененность	1.7	1.9	5
Газосодержание, м ³ /т	21	5	
Вязкость нефти в пл.ус., мПа*с	0.4		
Плотность нефти в пл.ус., т/м ³	0.6		
Р пл нач., Мпа	27.		
Р нас., МПа	15.		
НИЗ (BC1), млн.т	0.9 17.2		
КИН, д.ед.	0,3	54	5
Низкая проницаемост	ь пласта.	высоко	е газ

нефти, повышенное давление насыщения

Параметры модели: Симулятор: E100 Размерность: 228 * 228 * 38 Размер ячеек:50*50 Нагнетательных скважин: 6 Добывающих скважин: 17 Компенсация: 110 %

Извлекаемые запасы участка пласта Ю1 Северо-Хохряковского месторождения

Текущие потенциально-подвижные запасы на 01.01.2013, тыс. т/га

Текущий охват воздействием

Выводы

- Проблема адекватной локализации подвижных запасов не может быть решена в рамках «линейных» моделей, в которых остаточная нефтенасыщенность задается статическим распределением в объеме объекта разработки и не зависит от систем разработки.
- Перавновесная нелинейная фильтрация объективный фактор существенно влияющий на процессы разработки нефтяных и газовых месторождений. Это подтверждается практикой разработки, лабораторными и теоретическими данными.
- Покализация запасов на моделях неравновесной нелинейной фильтрации требует развития новых подходов к количественному анализу эффективности систем заводнения
- Отсутствия термодинамически равновесного распределение фаз в процессе разработки требует уточнения используемых в коммерческих симуляторах обобщенного Закона Дарси и уравнений фильтрации.

Контактная информация

г. Тюмень, Осипенко 79/1 тел. +79634551854 e-mail: <u>nacheremisin@tnnc.rosneft.ru</u>

Спасибо за внимание